
	

https://pesut.bebopim.com/866391712483081449273398412086582988236960?noxerimeviwavuzejawafokiwenodeliwojavotimikokuwamumudepukigimefufirutojoladodinubaredijowad=niwodexasanezolopalofotalowademakisaladegupesafijipugurorumotikagujodakaragedipatapololukefodojikolujigegozofukudinunidukesinogedeteleguzimifokitotujogurisepogoniwizasodelegarezolatipovolojazaraveraxadefalel&utm_kwd=uvm_top+and+uvm_test_top&kotoworibuletuzimarumaxenasapuxofuremufubadetuzitusebaxebepavaxodimumijuliwukazeguru=fesobaburukotoxanojasuzopafurifasovipixanisojikibosotexumavafujidejewewamafepomofajidoladugosafozivewigarojozifoxilezakoxefazevomanizetedutigi

Uvm_top	and	uvm_test_top

All	verification	components,	interfaces	and	DUT	are	instantiated	in	a	top	level	module	called	testbench.	It	is	a	static	container	to	hold	everything	required	to	be	simulated	and	becomes	the	root	node	in	the	hierarchy.	This	is	usually	named	tb	or	tb_top	although	it	can	assume	any	other	name.	Simulators	typically	need	to	know	the	top	level	module	so
that	it	can	analyze	components	within	the	top	module	and	elaborate	the	design	hierarchy.	Click	here	to	know	more	about	top	level	modules	!Testbench	Top	ExampleThe	example	below	details	the	elements	inside	the	top	module	tb_top.	module	tb_top;	import	uvm_pkg::*;	//	Complex	testbenches	will	have	multiple	clocks	and	hence	multiple	clock	//
generator	modules	that	will	be	instantiated	elsewhere	//	For	simple	designs,	it	can	be	put	into	testbench	top	bit	clk;	always	#10	clk	Note	the	following	:tb_top	is	a	module	and	is	a	static	container	to	hold	everything	elseIt	is	required	to	import	uvm_pkg	in	order	to	use	UVM	constructs	in	this	moduleClock	is	generated	in	the	testbench	and	passed	to	the
interface	handle	dut_if1The	interface	is	set	as	an	object	in	uvm_config_db	via	set	and	will	be	retrieved	in	the	test	class	using	get	methodsThe	test	is	invoked	by	run_test	method	which	accepts	name	of	the	test	class	base_test	as	an	argumentCall	waveform	dump	tasks	if	requiredClock	generationA	real	design	may	have	digital	blocks	that	operate	on
multiple	clock	frequencies	and	hence	the	testbench	would	need	to	generate	multiple	clocks	and	provide	as	an	input	to	the	design.	Hence	clock	generation	may	not	be	as	simple	as	an	always	block	shown	in	the	example	above.	In	order	to	test	different	functionalities	of	the	design,	many	clock	parameters	such	as	frequency,	duty	cycle	and	phase	may
need	to	be	dynamically	updated	and	the	testbench	would	need	infrastructure	to	support	such	dynamic	operations.	//	Module	level	clock	generation	module	clk_main	(...);	//	Code	for	clock	generation	endmodule	//	Instantiated	and	connected	to	an	interface	module	tb_top;	bit	clk_main_out;	clk_main	u_clk_main_0	(.out	(clk_main_out),	...);	dut_if	dut_if0	(
clk_main_out,	...);	endmodule	The	approach	shown	above	may	not	be	scalable	and	need	to	be	driven	from	the	testbench	using	hierarchical	signal	paths	since	they	are	instantiated	as	modules.	A	better	UVM	alternative	is	to	create	an	agent	for	the	clock	so	that	it	can	be	easily	controlled	from	sequence	and	tests	using	agent	configuration	objects.	class
clk_agent	extends	uvm_agent;	clk_cfg	m_clk_cfg;	virtual	function	void	build_phase(uvm_phase	phase);	super.build_phase(phase);	//	Get	clk_cfg	object	and	build	this	agent	accordingly	endfunction	endclass	class	base_test	extends	uvm_test;	clk_cfg	m_clk_cfg;	virtual	function	void	build_phase(uvm_phase	phase);	super.build_phase(phase);
m_clk_cfg.m_freq	=	500;	endfunction	endclass	Reset	GenerationIn	a	similar	way,	a	reset	agent	can	be	developed	to	handle	all	reset	requests.	In	many	systems,	there	are	two	kinds	of	reset	-	hardware	and	software.	A	software	reset	is	typically	done	through	a	register	model	and	would	be	separate	from	a	reset	agent.	Hardware	resets	include	assertion
of	the	system	reset	pin	for	a	given	duration	or	follow	a	certain	sequence	of	events	before	the	actual	reset	is	applied.	All	such	scenarios	can	be	handled	separately	using	this	reset	agent	which	needs	a	handle	to	the	reset	interface.	class	reset_agent	extends	uvm_agent;	reset_cfg	m_reset_cfg;	//	Rest	of	the	code	endclass	class	my_sequence	extends
uvm_sequence;	virtual	task	body();	hw_reset_seq	m_hw_reset_seq;	//	Call	the	required	kind	of	reset	sequence	in	test	scenario	m_hw_reset_seq.start(p_sequencer);	endtask	endclass	Creation	of	internal	tap	pointsSome	testbench	components	may	rely	on	tapping	internal	nets	in	the	design	to	either	force	or	sample	values	to	test	certain	features.	These
internal	nets	may	need	to	be	assigned	to	a	different	value	based	on	input	stimuli	and	can	be	done	so	in	the	top	level	testbench	module.	Such	signals	can	be	tied	to	a	generic	interface	and	be	driven	from	another	agent.	interface	gen_if;	logic	[99:0]	signals;	//	General	100-bit	wide	vector	endinterface	module	tb_top;	gen_if	u_if0	();	des	u_des	(...);	//
Assign	an	internal	net	to	a	generic	interface	signal	assign	u_if0.signals[23]	=	u_des.u_xyz.u_abc.status;	endmodule	A	testcase	is	a	pattern	to	check	and	verify	specific	features	and	functionalities	of	a	design.	A	verification	plan	lists	all	the	features	and	other	functional	items	that	needs	to	be	verified,	and	the	tests	neeeded	to	cover	each	of	them.A	lot	of
different	tests,	hundreds	or	even	more,	are	typically	required	to	verify	complex	designs.Instead	of	writing	the	same	code	for	different	testcases,	we	put	the	entire	testbench	into	a	container	called	an	Environment,	and	use	the	same	environment	with	a	different	configuration	for	each	test.	Each	testcase	can	override,	tweak	knobs,	enable/disable	agents,
change	variable	values	in	the	configuration	table	and	run	different	sequences	on	many	sequencers	in	the	verification	environment.	Class	Hierarchy	Steps	to	write	a	UVM	Test	1.	Create	a	custom	class	inherited	from	uvm_test,	register	it	with	factory	and	call	function	new	//	Step	1:	Declare	a	new	class	that	derives	from	"uvm_test"	//	my_test	is	user-
given	name	for	this	class	that	has	been	derived	from	"uvm_test"	class	my_test	extends	uvm_test;	//	[Recommended]	Makes	this	test	more	re-usable	`uvm_component_utils	(my_test)	//	This	is	standard	code	for	all	components	function	new	(string	name	=	"my_test",	uvm_component	parent	=	null);	super.new	(name,	parent);	endfunction	//	Code	for	rest
of	the	steps	come	here	endclass	2.	Declare	other	environments	and	verification	components	and	build	them	//	Step	2:	Declare	other	testbench	components	-	my_env	and	my_cfg	are	assumed	to	be	defined	my_env	m_top_env;	//	Testbench	environment	that	contains	other	agents,	register	models,	etc	my_cfg	m_cfg0;	//	Configuration	object	to	tweak	the
environment	for	this	test	//	Instantiate	and	build	components	declared	above	virtual	function	void	build_phase	(uvm_phase	phase);	super.build_phase	(phase);	//	[Recommended]	Instantiate	components	using	"type_id::create()"	method	instead	of	new()	m_top_env	=	my_env::type_id::create	("m_top_env",	this);	m_cfg0	=	my_cfg::type_id::create
("m_cfg0",	this);	//	[Optional]	Configure	testbench	components	if	required,	get	virtual	interface	handles,	etc	set_cfg_params	();	//	[Recommended]	Make	the	cfg	object	available	to	all	components	in	environment/agent/etc	uvm_config_db	#(my_cfg)	::	set	(this,	"m_top_env.my_agent",	"m_cfg0",	m_cfg0);	endfunction	3.	Print	UVM	topology	if	required	//
[Recommended]	By	this	phase,	the	environment	is	all	set	up	so	its	good	to	just	print	the	topology	for	debug	virtual	function	void	end_of_elaboration_phase	(uvm_phase	phase);	uvm_top.print_topology	();	endfunction	4.	Start	a	virtual	sequence	//	Start	a	virtual	sequence	or	a	normal	sequence	for	this	particular	test	virtual	task	run_phase	(uvm_phase
phase);	//	Create	and	instantiate	the	sequence	my_seq	m_seq	=	my_seq::type_id::create	("m_seq");	//	Raise	objection	-	else	this	test	will	not	consume	simulation	time*	phase.raise_objection	(this);	//	Start	the	sequence	on	a	given	sequencer	m_seq.start	(m_env.seqr);	//	Drop	objection	-	else	this	test	will	not	finish	phase.drop_objection	(this);	endtask	How
to	run	a	UVM	testA	test	is	usually	started	within	testbench	top	by	a	task	called	run_test.This	global	task	should	be	supplied	with	the	name	of	user-defined	UVM	test	that	needs	to	be	started.	If	the	argument	to	run_test	is	blank,	it	is	necessary	to	specify	the	testname	via	command-line	options	to	the	simulator	using	+UVM_TESTNAME.	//	Specify	the
testname	as	an	argument	to	the	run_test	()	task	initial	begin	run_test	("base_test");	end	Definition	for	run_test	is	given	below.	//	This	is	a	global	task	that	gets	the	UVM	root	instance	and	//	starts	the	test	using	its	name.	This	task	is	called	in	tb_top	task	run_test	(string	test_name="");	uvm_root	top;	uvm_coreservice_t	cs;	cs	=	uvm_coreservice_t::get();
top	=	cs.get_root();	top.run_test(test_name);	endtask	How	to	run	any	UVM	testThis	method	is	preferred	because	it	allows	more	flexibility	to	choose	different	tests	without	modifying	testbench	top	every	time	you	want	to	run	a	different	test.	It	also	avoids	the	need	for	recompilation	since	contents	of	the	file	is	not	updated.If	+UVM_TESTNAME	is
specified,	the	UVM	factory	creates	a	component	of	the	given	test	type	and	starts	its	phase	mechanism.	If	the	specified	test	is	not	found	or	not	created	by	the	factory,	then	a	fatal	error	occurs.	If	no	test	is	specified	via	command-line	and	the	argument	to	the	run_test()	task	is	blank,	then	all	the	components	constructed	before	the	call	to	run_test()	will	be
cycled	through	their	simulation	phases.	//	Pass	the	DEFAULT	test	to	be	run	if	nothing	is	provided	through	command-line	initial	begin	run_test	("base_test");	//	Or	you	can	leave	the	argument	as	blank	//	run_test	();	end	//	Command-line	arguments	for	an	EDA	simulator	$>	[simulator]	-f	list	+UVM_TESTNAME=base_test	UVM	Base	Test	ExampleIn	the
following	example,	a	custom	test	called	base_test	that	inherits	from	uvm_test	is	declared	and	registered	with	the	factory.Testbench	environment	component	called	m_top_env	and	its	configuration	object	is	created	during	the	build_phase	and	setup	according	to	the	needs	of	the	test.	It	is	then	placed	into	the	configuration	database	using	uvm_config_db
so	that	other	testbench	components	within	this	environment	can	access	the	object	and	configure	sub	components	accordingly.	//	Step	1:	Declare	a	new	class	that	derives	from	"uvm_test"	class	base_test	extends	uvm_test;	//	Step	2:	Register	this	class	with	UVM	Factory	`uvm_component_utils	(base_test)	//	Step	3:	Define	the	"new"	function	function	new
(string	name,	uvm_component	parent	=	null);	super.new	(name,	parent);	endfunction	//	Step	4:	Declare	other	testbench	components	my_env	m_top_env;	//	Testbench	environment	my_cfg	m_cfg0;	//	Configuration	object	//	Step	5:	Instantiate	and	build	components	declared	above	virtual	function	void	build_phase	(uvm_phase	phase);	super.build_phase
(phase);	//	[Recommended]	Instantiate	components	using	"type_id::create()"	method	instead	of	new()	m_top_env	=	my_env::type_id::create	("m_top_env",	this);	m_cfg0	=	my_cfg::type_id::create	("m_cfg0",	this);	//	[Optional]	Configure	testbench	components	if	required	set_cfg_params	();	//	[Optional]	Make	the	cfg	object	available	to	all	components	in
environment/agent/etc	uvm_config_db	#(my_cfg)	::	set	(this,	"m_top_env.my_agent",	"m_cfg0",	m_cfg0);	endfunction	//	[Optional]	Define	testbench	configuration	parameters,	if	its	applicable	virtual	function	void	set_cfg_params	();	//	Get	DUT	interface	from	top	module	into	the	cfg	object	if	(!	uvm_config_db	#(virtual	dut_if)	::	get	(this,	"",	"dut_if",
m_cfg0.vif))	begin	`uvm_error	(get_type_name	(),	"DUT	Interface	not	found	!")	end	//	Assign	other	parameters	to	the	configuration	object	that	has	to	be	used	in	testbench	m_cfg0.m_verbosity	=	UVM_HIGH;	m_cfg0.active	=	UVM_ACTIVE;	endfunction	//	[Recommended]	By	this	phase,	the	environment	is	all	set	up	so	its	good	to	just	print	the	topology	for
debug	virtual	function	void	end_of_elaboration_phase	(uvm_phase	phase);	uvm_top.print_topology	();	endfunction	function	void	start_of_simulation_phase	(uvm_phase	phase);	super.start_of_simulation_phase	(phase);	//	[Optional]	Assign	a	default	sequence	to	be	executed	by	the	sequencer	or	look	at	the	run_phase	...	uvm_config_db#
(uvm_object_wrapper)::set(this,"m_top_env.my_agent.m_seqr0.main_phase",	"default_sequence",	base_sequence::type_id::get());	endfunction	//	or	[Recommended]	start	a	sequence	for	this	particular	test	virtual	task	run_phase	(uvm_phase	phase);	my_seq	m_seq	=	my_seq::type_id::create	("m_seq");	super.run_phase(phase);	phase.raise_objection	(this);
m_seq.start	(m_env.seqr);	phase.drop_objection	(this);	endtask	endclass	The	UVM	topology	task	print_topology	displays	all	instantiated	components	in	the	environment	and	helps	in	debug	and	to	identify	if	any	component	got	left	out.A	test	sequence	object	is	built	and	started	on	the	environment	virtual	sequencer	using	its	start	method.Derivative
TestsA	base	test	helps	in	the	setup	of	all	basic	environment	parameters	and	configurations	that	can	be	overridden	by	derivative	tests.	Since	there	is	no	definition	for	build_phase	and	other	phases	that	are	defined	differently	in	dv_wr_rd_register	,	its	object	will	inherently	call	its	parent's	build_phase	and	other	phases	because	of	inheritance.	Function
new	is	required	in	all	cases	and	simulation	will	give	a	compilation	error	if	its	not	found.	//	Build	a	derivative	test	that	launches	a	different	sequence	//	base_test	In	this	case,	only	run_phase	will	be	overriden	with	new	definition	in	derived	test	and	its	super	call	will	invoke	the	run_phase	of	the	base_test	.Assume	that	we	now	want	to	run	the	same
sequence	as	in	dv_wr_rd_register_test	but	instead	want	this	test	to	be	run	on	a	different	configuration	of	the	environment.	In	this	case,	we	can	have	another	derivative	test	of	the	previous	class	and	define	its	build_phase	in	a	different	way.	//	Build	a	derivative	test	that	builds	a	different	configuration	//	base_test	(1)	UVM使用双顶层的用法	|	骏的世界
(lujun.org.cn)	1.UVM的根-uvm_root	or	uvm_test_top?	(1)	uvm_test_top实例化时的名字是uvm_test_top,这个名字是由UVM在run_test时自动指定的;	(2)	uvm_top的名字是_top_,但是在显示路径时,并不会显示这个名字,而只显示从uvm_test_top开始的路径;	2.	uvm_root(类)	(1)	uvm_root本质是uvm_component;	(2)	uvm_root的存在是为了保证验证平台只有一棵树(uvm_root是单实例类,
整个UVM验证平台中,有且只有uvm_root的一个实例存在),并且发挥着phase	controller的作用,管理所有component的phase.	(3)	任何没有指定parent的component,默认其parent是uvm_top(全局变量,	uvm_root的一个实例).	(4)	uvm_component的两大机制(树形组织结构和phase机制)都离不开uvm_root;	3.	uvm_top(uvm_root类的句柄)及常用函数	(1)	UVM中真正的树根,任何组件实例都在
它之下(如果组件的parent为null,那么该组件为uvm_top的子组件);	(2)	uvm_top是一个全局变量,是uvm_root的一个实例,也是uvm_root唯一的实例.	(3)	uvm_top的名字是_top_,但是在显示路径时,并不会显示这个名字,而只显示从uvm_test_top开始的路径.	(4)	uvm_top.find及示例;	uvm_component	comp;	comp=uvm_top.find(“*.axi_agt”);	注1:其中*表示匹配任意字符;?表示匹配一个字
符;+表示匹配一个或多个字符;	(5)	uvm_top.find_all及示例;uvm_component	comps[$];	uvm_top.find_all("*.axi_?",comps);	foreach(comps[i])	begin	　　comps[i].print();	end	4.	uvm_test_top	(1)	通过run_test语句创建的实例的名字为uvm_test_top.无论传递给run_test的参数是什么,创建的实例的名字都为uvm_test_top.	(2)	uvm_test_top的parent是uvm_top,而uvm_top的parent
是null.	(3)	UVM中,支持uvm_top下有多个叶子节点,但是,多个叶子节点不能都叫uvm_test_top,如下所示.	5.uvm双顶层	详见UVM使用双顶层的用法	|	骏的世界	(lujun.org.cn);	问题:双顶层中的另外一个顶层是怎么跑起来的？	Welcome	to	the	world	of	Universal	Verification	Methodology	(UVM),	where	efficient	and	effective	verification	processes	come	to	life.	If	you’re	venturing
into	UVM,	you	may	have	stumbled	across	terms	like	UVM_Top	and	UVM_Test_Top.	These	components	are	pivotal	in	structuring	your	verification	environment.	But	what	exactly	do	they	entail?	Understanding	these	elements	can	significantly	enhance	your	simulation	experience.	Whether	you’re	a	novice	or	an	experienced	engineer,	grasping	the	ins	and
outs	of	UVM_Top	and	UVM_Test_Top	will	empower	you	with	better	control	over	your	testing	scenarios.	Let’s	dive	deep	into	this	essential	topic,	unravel	their	differences,	explore	their	benefits,	and	arm	yourself	with	practical	insights	for	successful	implementation.	The	journey	through	the	intricate	maze	of	UVM	starts	here!	Understanding	UVM_Top
and	UVM_Test_Top	UVM_Top	and	UVM_Test_Top	play	pivotal	roles	in	the	Universal	Verification	Methodology.	They	are	essential	for	structuring	your	testbench	effectively.	UVM_Top	acts	as	the	top-level	module	in	a	verification	environment.	It	orchestrates	various	components	like	agents,	monitors,	and	scoreboards.	This	makes	it	a	crucial	element	for
managing	complex	designs.	On	the	other	hand,	UVM_Test_Top	is	specifically	designed	to	facilitate	individual	tests	within	that	environment.	It	focuses	on	executing	specific	scenarios	or	test	cases	efficiently.	While	both	serve	important	purposes,	their	functionalities	differ	significantly.	Understanding	these	distinctions	helps	streamline	your	verification
process,	making	it	more	efficient	and	organized.	Using	them	correctly	can	enhance	code	readability	and	maintainability	while	reducing	confusion	during	simulation	runs.	Grasping	their	unique	roles	empowers	engineers	to	build	robust	verification	environments	tailored	to	their	needs.	Key	Differences	between	UVM_Top	and	UVM_Test_Top	UVM_Top
serves	as	the	primary	container	for	your	entire	verification	environment.	It	brings	together	all	components	and	configurations	required	to	execute	a	simulation.	On	the	other	hand,	UVM_Test_Top	acts	as	a	specialized	layer	within	UVM_Top	focused	on	executing	specific	test	scenarios.	This	distinction	allows	you	to	run	targeted	tests	without	altering
the	overall	structure	of	the	verification	environment.	While	both	serve	critical	roles,	their	purposes	differ	significantly.	UVM_Top	encompasses	everything	from	agents	to	scoreboards,	ensuring	that	they	function	cohesively.	Conversely,	UVM_Test_Top	zeroes	in	on	particular	methodologies	or	use	cases	during	testing	phases.	This	separation	helps
streamline	your	workflow	and	enhances	modularity	in	design.	Understanding	these	differences	can	improve	your	approach	to	creating	efficient	testbenches	and	enable	better	resource	management	throughout	various	stages	of	development.	Benefits	of	Using	UVM_Top	and	UVM_Test_Top	Utilizing	UVM_Top	and	UVM_Test_Top	brings	several
advantages	to	your	verification	process.	First,	they	enhance	modularity.	This	allows	for	more	maintainable	test	environments,	as	components	can	be	easily	swapped	or	upgraded	without	disrupting	the	entire	structure.	Next,	these	constructs	streamline	the	simulation	process.	By	providing	a	clear	hierarchy,	they	help	organize	tests	effectively.	This
organization	minimizes	confusion	when	navigating	complex	systems.	Another	significant	benefit	is	improved	reusability.	Once	you	establish	a	robust	framework	with	UVM_Top	and	UVM_Test_Top,	you	can	leverage	it	across	multiple	projects.	These	tools	also	promote	better	collaboration	among	team	members.	With	defined	roles	and	responsibilities	in
place,	tasks	become	clearer,	fostering	an	efficient	working	environment.	Using	these	top-level	constructs	facilitates	easier	debugging	by	isolating	issues	within	specific	layers	of	your	architecture.	How	to	Implement	UVM_Top	and	UVM_Test_Top	in	Your	Verification	Environment	Implementing	UVM_Top	and	UVM_Test_Top	in	your	verification
environment	is	a	structured	process	that	can	enhance	your	testbench	architecture.	Start	by	defining	the	UVM_Top,	which	serves	as	the	top-level	module	for	your	entire	verification	environment.	This	component	orchestrates	all	sub-modules	like	agents,	monitors,	and	drivers.	Next,	create	the	UVM_Test_Top	that	will	manage	individual	tests	within	this
framework.	Each	test	should	inherit	from	the	base	class	provided	by	UVM	to	leverage	its	features	effectively.	Connect	these	components	carefully	to	ensure	smooth	communication	between	them.	Use	configuration	objects	to	pass	parameters	easily	across	different	layers	of	your	hierarchy.	Don’t	forget	to	instantiate	necessary	sequences	and
scoreboards	inside	the	test	top	for	validation	purposes.	Properly	setting	up	these	components	will	lay	a	solid	foundation	for	robust	verification	processes	in	any	project	you	undertake.	Troubleshooting	Common	Issues	with	UVM_Top	and	UVM_Test_Top	When	working	with	UVM_Top	and	UVM_Test_Top,	it’s	common	to	encounter	some	hiccups.	One
frequent	issue	can	be	related	to	the	configuration	of	your	testbench.	Ensure	that	all	components	are	correctly	initialized	and	connected.	Another	problem	might	arise	from	signal	mismatches	between	modules.	Make	sure	that	the	bus	interfaces	align	properly,	as	any	discrepancies	can	lead	to	simulation	failures	or	incorrect	results.	Keep	an	eye	on	your
environment’s	memory	consumption	too.	If	you’re	facing	slow	simulations,	consider	optimizing	your	code	or	breaking	down	large	data	sets	into	smaller	chunks	for	easier	management.	Logging	is	crucial	in	troubleshooting.	Utilize	built-in	reporting	tools	within	UVM	to	identify	error	sources	quickly.	A	well-structured	log	will	guide	you	to	potential	issues
faster	than	manual	searches	through	the	codebase.	Don’t	underestimate	the	power	of	community	forums	and	resources.	Engaging	with	fellow	users	often	uncovers	solutions	for	problems	you’ve	yet	to	discover	on	your	own.	Best	Practices	for	Using	UVM_Top	and	UVM_Test_Top	When	using	UVM_Top	and	UVM_Test_Top,	organization	is	key.	Maintain	a
clear	hierarchy	in	your	testbench	to	avoid	confusion	during	complex	simulations.	A	well-structured	layout	enhances	readability	and	simplifies	debugging.	Utilize	consistent	naming	conventions	for	your	components.	This	practice	helps	team	members	quickly	identify	different	parts	of	the	verification	environment,	making	collaboration	more	efficient.
Leverage	reusable	components	whenever	possible.	By	designing	modular	tests,	you	can	save	time	and	reduce	redundancy	across	projects.	Integrate	thorough	documentation	throughout	your	setup.	Clear	comments	and	guidelines	will	assist	others	in	understanding	your	design	choices	while	providing	valuable	insights	for	future	enhancements.
Regularly	run	regression	tests	to	catch	potential	issues	early	on.	Continuous	validation	ensures	that	changes	do	not	introduce	new	bugs	or	disrupt	existing	functionalities	within	your	UVM	framework.	Conclusion	When	it	comes	to	verification	in	the	UVM	environment,	understanding	UVM_Top	and	UVM_Test_Top	is	crucial	for	achieving	efficient	and
effective	results.	By	grasping	their	distinct	roles	within	your	testbench	architecture,	you	can	enhance	both	performance	and	reliability.	Utilizing	these	components	properly	allows	for	better	organization	of	your	testing	framework	while	streamlining	the	development	process.	The	benefits	are	clear:	improved	modularity,	easier	debugging,	and	a	more
structured	approach	to	verification	tasks.	Implementing	best	practices	ensures	that	you’re	not	only	using	these	elements	effectively	but	also	paving	the	way	for	future	scalability	in	your	projects.	As	challenges	arise	during	implementation	or	execution,	knowing	how	to	troubleshoot	common	issues	helps	maintain	productivity	without	unnecessary
setbacks.	By	keeping	these	insights	in	mind,	you’ll	be	well-equipped	to	leverage	UVM_Top	and	UVM_Test_Top	successfully	within	your	verification	environments.	Embracing	these	strategies	will	transform	your	workflow	into	one	that’s	both	robust	and	adaptable	as	technology	continues	to	evolve.	Hello	All,	I	want	to	access	driver	or	environment
variables	using	$root	or	uvm_top	or	uvm_test_top?	Thanks,	Dipak	Jatiya	In	reply	to	Dipak_jatiya:	This	is	a	bad	idea,	because	you	have	to	use	hierarchical	paths.	This	limits	the	reusability	of	your	code.	In	reply	to	Dipak_jatiya:	$root	refers	to	your	top	module.	Components	like	driver/env	are	created	in	test,	so	you	can	access	these	from	anywhere
(including	from	top	module)	using	e.g.,	$root.uvm_test_top.env_h.agent_h.drv_h.var_name;	$root.uvm_top.env_h.agent_h.drv_h.var_name;	Or	you	can	use	uvm_top/uvm_test_top	(refers	to	test	instance)	from	tests	or	testbench	environment	below	test	hierarchy,	uvm_test_top.env_h.agent_h.drv_h.var_name;	uvm_top.env_h.agent_h.drv_h.var_name;	In
reply	to	MayurKubavat:	Hi	Mayur,	I’ve	tried	the	above	things	but	can’t	get	the	test	name	instance	from	above.	Get	below	Error	while	using	$root.uvm_test_top.y	and	uvm_test_top.y	Failed	to	find	‘uvm_test_top’	in	hierarchical	name	'/$root/uvm_test_top/y	uvm_top.uvm_test_top.y	Field/method	name	(uvm_test_top)	not	in	‘uvm_top’	In	short	i	can’t	get
the	test	variable	using	uvm_test_top.	I’m	using	this	from	driver	run	phase.	Thanks,	Dipak	Jatiya	Why	not	to	use	configDB	in	such	case	if	you	know	which	heir	and	which	variable	your	driver	need	to	know!	not	getting	why	you	have	to	access	TB	variable	using	heir.	If	you	could	tell	us	more	about	your	problem	it	would	be	more	helpful.	In	reply	to
Dipak_jatiya:	If	you	want	to	avoid	using	hierarchical	paths.	You	can	use	uvm_utils#()::find().	For	example,	in	the	test,	you	know	the	component	instance,	you	can	do	if	you	want	to	access	a	driver,	$root.uvm_test_top.m_env.m_agent.m_driver	You	can	do	agent_driver	m_agent_driver;	m_agent_driver	=	uvm_utils#(agent_driver)::find(m_env)	In	reply	to
MayurKubavat:	Hi,	What	is	the	difference	between	uvm_top	and	uvm_test_top?	Can	You	Say	in	hierarchical	order

