
	

https://popoges.nurepikis.com/160536696017717920430565838694842091027949?vulisabajadigubuvunozadumidupuvewisupivevod=fimazisunojatagotogavudaduxepesemamigiwoxamewawekirakajogenadabikopevolatunomiwisukukodixofixumisukejokotewutenirulowibasemevirifemejoropemafusasumobowapukalipufojodupoxobiromitafupuwasimevebomapifikapo&utm_term=install+camelot+in+anaconda&dozikabipovavolujojukemaxupiwuwilugokejikajuvamugefagakipefidadasevagurat=dujutiguwusaxexufifasufefigoduxizanudaxurajokegesegiradaviripodazovosipijuzovapililomegesitexixafakelumozepovadetebexol
































Camelot	is	a	Python	library	that	can	help	you	extract	tables	from	PDFs.	Extract	tables	from	PDFs	in	just	a	few	lines	of	code:	Try	it	yourself	in	our	interactive	quickstart	notebook.	Or	check	out	a	simple	example	using	this	pdf.	>>>	import	camelot	>>>	tables	=	camelot.read_pdf('foo.pdf')	>>>	tables	>>>	tables.export('foo.csv',	f='csv',
compress=True)	#	json,	excel,	html,	markdown,	sqlite	>>>	tables[0]	>>>	tables[0].parsing_report	{	'accuracy':	99.02,	'whitespace':	12.24,	'order':	1,	'page':	1	}	>>>	tables[0].to_csv('foo.csv')	#	to_json,	to_excel,	to_html,	to_markdown,	to_sqlite	>>>	tables[0].df	#	get	a	pandas	DataFrame!	Cycle	Name	KI	(1/km)	Distance	(mi)	Percent	Fuel	Savings
Improved	Speed	Decreased	Accel	Eliminate	Stops	Decreased	Idle	2012_2	3.30	1.3	5.9%	9.5%	29.2%	17.4%	2145_1	0.68	11.2	2.4%	0.1%	9.5%	2.7%	4234_1	0.59	58.7	8.5%	1.3%	8.5%	3.3%	2032_2	0.17	57.8	21.7%	0.3%	2.7%	1.2%	4171_1	0.07	173.9	58.1%	1.6%	2.1%	0.5%	Camelot	also	comes	packaged	with	a	command-line	interface!	Refer	to	the
QuickStart	Guide	to	quickly	get	started	with	Camelot,	extract	tables	from	PDFs	and	explore	some	basic	options.	Tip:	Visit	the	parser-comparison-notebook	to	get	an	overview	of	all	the	packed	parsers	and	their	features.	Note:	Camelot	only	works	with	text-based	PDFs	and	not	scanned	documents.	(As	Tabula	explains,	"If	you	can	click	and	drag	to	select
text	in	your	table	in	a	PDF	viewer,	then	your	PDF	is	text-based".)	You	can	check	out	some	frequently	asked	questions	here.	Why	Camelot?	Configurability:	Camelot	gives	you	control	over	the	table	extraction	process	with	tweakable	settings.	Metrics:	You	can	discard	bad	tables	based	on	metrics	like	accuracy	and	whitespace,	without	having	to	manually
look	at	each	table.	Output:	Each	table	is	extracted	into	a	pandas	DataFrame,	which	seamlessly	integrates	into	ETL	and	data	analysis	workflows.	You	can	also	export	tables	to	multiple	formats,	which	include	CSV,	JSON,	Excel,	HTML,	Markdown,	and	Sqlite.	See	comparison	with	similar	libraries	and	tools.	Installation	Using	conda	The	easiest	way	to
install	Camelot	is	with	conda,	which	is	a	package	manager	and	environment	management	system	for	the	Anaconda	distribution.	conda	install	-c	conda-forge	camelot-py	Using	pip	After	installing	the	dependencies	(tk	and	ghostscript),	you	can	also	just	use	pip	to	install	Camelot:	pip	install	"camelot-py[base]"	From	the	source	code	After	installing	the
dependencies,	clone	the	repo	using:	git	clone	and	install	using	pip:	cd	camelot	pip	install	"."	Documentation	The	documentation	is	available	at	.	Wrappers	camelot-php	provides	a	PHP	wrapper	on	Camelot.	Related	projects	camelot-sharp	provides	a	C	sharp	implementation	of	Camelot.	Contributing	The	Contributor's	Guide	has	detailed	information
about	contributing	issues,	documentation,	code,	and	tests.	Versioning	Camelot	uses	Semantic	Versioning.	For	the	available	versions,	see	the	tags	on	this	repository.	For	the	changelog,	you	can	check	out	the	releases	page.	License	This	project	is	licensed	under	the	MIT	License,	see	the	LICENSE	file	for	details.	This	repository	was	archived	by	the
owner	on	Jan	6,	2025.	It	is	now	read-only.	This	repository	was	archived	by	the	owner	on	Jan	6,	2025.	It	is	now	read-only.	You	can’t	perform	that	action	at	this	time.	Camelot	is	a	Python	library	that	can	help	you	extract	tables	from	PDFs!	Note:	You	can	also	check	out	Excalibur,	the	web	interface	to	Camelot!	Here's	how	you	can	extract	tables	from	PDFs.
You	can	check	out	the	PDF	used	in	this	example	here.	>>>	import	camelot	>>>	tables	=	camelot.read_pdf('foo.pdf')	>>>	tables	>>>	tables.export('foo.csv',	f='csv',	compress=True)	#	json,	excel,	html,	markdown,	sqlite	>>>	tables[0]	>>>	tables[0].parsing_report	{	'accuracy':	99.02,	'whitespace':	12.24,	'order':	1,	'page':	1	}	>>>
tables[0].to_csv('foo.csv')	#	to_json,	to_excel,	to_html,	to_markdown,	to_sqlite	>>>	tables[0].df	#	get	a	pandas	DataFrame!	Cycle	Name	KI	(1/km)	Distance	(mi)	Percent	Fuel	Savings	Improved	Speed	Decreased	Accel	Eliminate	Stops	Decreased	Idle	2012_2	3.30	1.3	5.9%	9.5%	29.2%	17.4%	2145_1	0.68	11.2	2.4%	0.1%	9.5%	2.7%	4234_1	0.59	58.7
8.5%	1.3%	8.5%	3.3%	2032_2	0.17	57.8	21.7%	0.3%	2.7%	1.2%	4171_1	0.07	173.9	58.1%	1.6%	2.1%	0.5%	Camelot	also	comes	packaged	with	a	command-line	interface!	Note:	Camelot	only	works	with	text-based	PDFs	and	not	scanned	documents.	(As	Tabula	explains,	"If	you	can	click	and	drag	to	select	text	in	your	table	in	a	PDF	viewer,	then	your	PDF
is	text-based".)	You	can	check	out	some	frequently	asked	questions	here.	Configurability:	Camelot	gives	you	control	over	the	table	extraction	process	with	tweakable	settings.	Metrics:	You	can	discard	bad	tables	based	on	metrics	like	accuracy	and	whitespace,	without	having	to	manually	look	at	each	table.	Output:	Each	table	is	extracted	into	a	pandas
DataFrame,	which	seamlessly	integrates	into	ETL	and	data	analysis	workflows.	You	can	also	export	tables	to	multiple	formats,	which	include	CSV,	JSON,	Excel,	HTML,	Markdown,	and	Sqlite.	See	comparison	with	similar	libraries	and	tools.	If	Camelot	has	helped	you,	please	consider	supporting	its	development	with	a	one-time	or	monthly	donation	on
OpenCollective.	The	easiest	way	to	install	Camelot	is	with	conda,	which	is	a	package	manager	and	environment	management	system	for	the	Anaconda	distribution.	$	conda	install	-c	conda-forge	camelot-py	After	installing	the	dependencies	(tk	and	ghostscript),	you	can	also	just	use	pip	to	install	Camelot:	$	pip	install	"camelot-py[base]"	After	installing
the	dependencies,	clone	the	repo	using:	$	git	clone	and	install	Camelot	using	pip:	$	cd	camelot	$	pip	install	".[base]"	The	documentation	is	available	at	.	camelot-php	provides	a	PHP	wrapper	on	Camelot.	The	Contributor's	Guide	has	detailed	information	about	contributing	issues,	documentation,	code,	and	tests.	Camelot	uses	Semantic	Versioning.	For
the	available	versions,	see	the	tags	on	this	repository.	For	the	changelog,	you	can	check	out	HISTORY.md.	This	project	is	licensed	under	the	MIT	License,	see	the	LICENSE	file	for	details.	In	this	tutorial,	you	will	learn	how	you	can	extract	tables	in	PDF	using	camelot	library	in	Python.	Camelot	is	a	Python	library	and	a	command-line	tool	that	makes	it
easy	for	anyone	to	extract	data	tables	trapped	inside	PDF	files.This	part	of	the	documentation	covers	the	steps	to	install	Camelot.Using	condaThe	easiest	way	to	install	Camelot	is	to	install	it	with	conda,	which	is	a	package	manager	and	environment	management	system	for	the	Anaconda	distribution.$	conda	install	-c	conda-forge	camelot-pyUsing
pipAfter	installing	the	dependencies,	which	include	Tkinter	and	ghostscript,	you	can	simply	use	pip	to	install	Camelot:$	pip	install	camelot-py[cv]For	more	information,	check	the	official	documentationThe	PDF	used	in	this	tutorial	can	be	downloaded	from	hereimport	camelotTo	extract	the	PDF#	PDF	file	to	extract	tables	fromfile	=	"foo.pdf"The	PDF
file	called	“foo.pdf”	is	a	normal	page	that	contains	one	table	shown	in	the	image	below.TableExtracting	all	tables	in	the	PDF	filetables	=	camelot.read_pdf(file)“read_pdf()”	function	extracts	all	tables	in	a	PDF	file.To	print	the	number	of	tables	extracted:#	number	of	tables	extractedprint("Total	tables	extracted:",	tables.n)Output:It	contains	only	one
table.Printing	this	table	as	a	Pandas	DataFrame:#	print	the	first	table	as	Pandas	DataFrameprint(tables[0].df)Output:Exporting	the	table	to	a	CSV	file:#	export	individuallytables[0].to_csv("foo.csv")Or	if	you	want	to	export	all	tables	all	at	once:#	or	export	all	in	a	ziptables.export("foo.csv",	f="csv",	compress=True)The	tables	can	be	exported	to	HTML
format:#	export	to	HTMLtables.export("foo.html",	f="html")It	can	also	be	exported	to	JSON	and	Excel	formats.Note:	Camelot	only	works	with	text-based	PDFs	and	not	scanned	documents	When	working	on	Windows,	the	easiest	way	to	get	up	and	running	is	through	the	Conceptive	Python	SDK.	This	SDK	is	a	Python	distribution	targeted	at	the
development	and	deployment	of	QT	based	applications.	This	all	in	one	installation	of	Camelot	with	all	its	dependencies	is	available	in	the	shop.	First,	make	sure	you	have	setup	tools	installed,	Setup	tools.	If	you	are	using	a	debian	based	distribution,	you	can	type:	sudo	apt-get	install	python-setuptools	Then	use	easy_install	to	install	Camelot,	under
Linux	this	would	be	done	by	typing:	sudo	easy_install	camelot	Linux	distributions	often	offer	packages	for	various	applications,	including	Camelot	and	its	dependencies	:	When	installing	Camelot	from	source,	you	need	to	make	sure	all	dependencies	are	installed	and	available	in	your	PYTHONPATH.	Dependencies	In	addition	to	PyQt	4.8	and	Qt	4.8,
Camelot	needs	these	libraries	:	SQLAlchemy==0.8.0	Jinja2==2.6	chardet==2.1.1	xlwt==0.7.4	xlrd==0.9.0	Releases	The	source	code	of	a	release	can	be	downloaded	from	the	Python	Package	Index	and	then	extracted:	tar	xzvf	Camelot-10.07.02.tar.gz	Repository	The	latest	and	greatest	version	of	the	source	can	be	checked	out	from	the	Bitbucket
repository:	hg	clone	Adapting	PYTHONPATH	You	need	to	make	sure	Camelot	and	all	its	dependencies	are	in	the	PYTHONPATH	before	you	start	using	it.	To	verify	if	you	have	Camelot	installed	and	available	in	the	PYTHONPATH,	fire	up	a	python	interpreter:	and	issue	these	commands:	>>>	import	camelot	>>>	print	camelot.__version__	>>>	import
sqlalchemy	>>>	print	sqlalchemy.__version__	>>>	import	PyQt4	None	of	them	should	raise	an	ImportError.	linux-64	v1.0.0	osx-64	v1.0.0	win-64	v0.8.0	noarch	v0.11.0	conda	install	To	install	this	package	run	one	of	the	following:	conda	install	conda-forge::camelot-pyconda	install	conda-forge/label/cf201901::camelot-pyconda	install	conda-
forge/label/cf202003::camelot-py	Description	Extracting	tabular	data	from	PDFs	has	long	been	a	challenging	task.	Traditional	methods	often	involve	manual	copying	and	pasting,	which	is	not	only	time-consuming	but	also	prone	to	errors.	Camelot,	a	Python	library,	offers	a	robust	solution	for	this	problem,	particularly	when	dealing	with	tables	in	PDF
documents.	In	this	blog,	we’ll	explore	why	Camelot	is	a	preferred	tool,	provide	a	detailed	code	sample,	discuss	its	pros,	and	highlight	the	industries	using	it.	Additionally,	we’ll	explain	how	Pysquad	can	assist	in	implementing	Camelot	for	your	projects.Why	CamelotCamelot	is	a	Python	library	designed	to	extract	tabular	data	from	PDFs	accurately	and
efficiently.	Here	are	some	reasons	why	Camelot	stands	out:Accuracy:	Camelot	uses	a	combination	of	rule-based	and	machine-learning	techniques	to	accurately	extract	tables.Flexibility:	It	supports	both	stream	and	lattice	methods,	allowing	it	to	handle	a	wide	variety	of	table	structures.Open	Source:	Being	open	source,	it	allows	for	customization	and
integration	into	various	workflows.Ease	of	Use:	With	a	simple	API,	Camelot	makes	it	easy	to	extract	tables	with	just	a	few	lines	of	code.Camelot	with	Python	Detailed	Code	SampleLet’s	dive	into	a	detailed	code	sample	to	see	how	Camelot	can	be	used	to	extract	tables	from	a	PDF	document.InstallationFirst,	you	need	to	install	Camelot.	You	can	do	this
using	pip:pip	install	camelot-py[cv]Basic	UsageHere	is	a	simple	example	of	how	to	use	Camelot	to	extract	tables	from	a	PDF:import	camelot#	Specify	the	path	to	the	PDF	filefile_path	=	'example.pdf'#	Read	the	tables	from	the	PDFtables	=	camelot.read_pdf(file_path)#	Print	the	number	of	tables	foundprint(f"Total	tables	found:	{tables.n}")#	Print	the
content	of	the	first	tableprint(tables[0].df)Advanced	UsageFor	more	control,	you	can	specify	parameters	like	flavor,	table_areas,	and	process_background:import	camelot#	Specify	the	path	to	the	PDF	filefile_path	=	'example.pdf'#	Use	the	lattice	flavor	to	extract	tablestables	=	camelot.read_pdf(file_path,	flavor='lattice',	pages='1-end')#	Save	the
tables	to	CSVtables.export('tables.csv',	f='csv',	compress=True)#	Print	the	content	of	all	tablesfor	i,	table	in	enumerate(tables):	print(f"Table	{i	+	1}")	print(table.df)In	this	example,	flavor='lattice'	is	used	to	handle	complex	table	structures.	You	can	also	use	flavor='stream'	it	for	simpler	tables.Pros	of	CamelotHigh	Accuracy:	Camelot’s	ability	to
accurately	detect	and	extract	tables	reduces	the	need	for	manual	intervention.Versatility:	With	support	for	both	lattice	and	stream	methods,	Camelot	can	handle	a	wide	range	of	table	structures.Customizable:	Being	open	source,	it	can	be	tailored	to	specific	needs.Integration:	Easy	integration	with	other	Python	libraries	and	workflows,	enhancing
automation	capabilities.Camelot	is	widely	used	across	various	industries	where	data	extraction	from	PDFs	is	crucial:Finance:	For	extracting	tables	from	financial	reports,	statements,	and	invoices.Healthcare:	To	extract	data	from	medical	records	and	research	papers.Education:	For	extracting	tables	from	academic	papers	and	reports.Government:	To
process	data	from	official	documents	and	forms.Legal:	For	extracting	information	from	contracts	and	case	files.How	Pysquad	Can	Assist	in	the	ImplementationPysquad	specializes	in	implementing	Python-based	solutions	for	various	business	needs.	Our	expertise	includes:Consultation:	This	will	help	you	understand	how	Camelot	can	be	integrated	into
your	existing	workflows.Customization:	Tailoring	Camelot	to	meet	the	specific	requirements	of	your	industry.Implementation:	Set	up	Camelot	and	ensure	it	works	seamlessly	with	your	data	processing	pipelines.Training:	Provide	training	to	your	team	on	how	to	use	and	customize	Camelot	for	optimal	results.Support:	Offering	ongoing	support	and
maintenance	to	ensure	smooth	operation.ReferencesCamelot	DocumentationCamelot	GitHub	RepositoryCamelot	offers	a	powerful	and	flexible	solution	for	extracting	tables	from	PDFs.	Its	high	accuracy,	ease	of	use,	and	open-source	nature	make	it	an	excellent	choice	for	various	industries.	With	the	assistance	of	Pysquad,	you	can	seamlessly	integrate
Camelot	into	your	workflows,	enhancing	your	data	extraction	capabilities	and	improving	efficiency.	Whether	you	are	in	finance,	healthcare,	education,	government,	or	legal	sectors,	Camelot	can	help	you	handle	your	data	extraction	needs	with	ease.	Camelot	is	a	Python	library	that	can	help	you	extract	tables	from	PDFs.	Extract	tables	from	PDFs	in	just
a	few	lines	of	code:	Try	it	yourself	in	our	interactive	quickstart	notebook.	Or	check	out	a	simple	example	using	this	pdf.	>>>	import	camelot	>>>	tables	=	camelot.read_pdf('foo.pdf')	>>>	tables	>>>	tables.export('foo.csv',	f='csv',	compress=True)	#	json,	excel,	html,	markdown,	sqlite	>>>	tables[0]	>>>	tables[0].parsing_report	{	'accuracy':	99.02,
'whitespace':	12.24,	'order':	1,	'page':	1	}	>>>	tables[0].to_csv('foo.csv')	#	to_json,	to_excel,	to_html,	to_markdown,	to_sqlite	>>>	tables[0].df	#	get	a	pandas	DataFrame!	Cycle	Name	KI	(1/km)	Distance	(mi)	Percent	Fuel	Savings	Improved	Speed	Decreased	Accel	Eliminate	Stops	Decreased	Idle	2012_2	3.30	1.3	5.9%	9.5%	29.2%	17.4%	2145_1	0.68
11.2	2.4%	0.1%	9.5%	2.7%	4234_1	0.59	58.7	8.5%	1.3%	8.5%	3.3%	2032_2	0.17	57.8	21.7%	0.3%	2.7%	1.2%	4171_1	0.07	173.9	58.1%	1.6%	2.1%	0.5%	Camelot	also	comes	packaged	with	a	command-line	interface!	Refer	to	the	QuickStart	Guide	to	quickly	get	started	with	Camelot,	extract	tables	from	PDFs	and	explore	some	basic	options.	Tip:	Visit	the
parser-comparison-notebook	to	get	an	overview	of	all	the	packed	parsers	and	their	features.	Note:	Camelot	only	works	with	text-based	PDFs	and	not	scanned	documents.	(As	Tabula	explains,	"If	you	can	click	and	drag	to	select	text	in	your	table	in	a	PDF	viewer,	then	your	PDF	is	text-based".)	You	can	check	out	some	frequently	asked	questions	here.
Configurability:	Camelot	gives	you	control	over	the	table	extraction	process	with	tweakable	settings.	Metrics:	You	can	discard	bad	tables	based	on	metrics	like	accuracy	and	whitespace,	without	having	to	manually	look	at	each	table.	Output:	Each	table	is	extracted	into	a	pandas	DataFrame,	which	seamlessly	integrates	into	ETL	and	data	analysis
workflows.	You	can	also	export	tables	to	multiple	formats,	which	include	CSV,	JSON,	Excel,	HTML,	Markdown,	and	Sqlite.	See	comparison	with	similar	libraries	and	tools.	The	easiest	way	to	install	Camelot	is	with	conda,	which	is	a	package	manager	and	environment	management	system	for	the	Anaconda	distribution.	conda	install	-c	conda-forge
camelot-py	After	installing	the	dependencies	(tk	and	ghostscript),	you	can	also	just	use	pip	to	install	Camelot:	pip	install	"camelot-py[base]"	After	installing	the	dependencies,	clone	the	repo	using:	git	clone	and	install	using	pip:	cd	camelot	pip	install	"."	The	documentation	is	available	at	.	camelot-php	provides	a	PHP	wrapper	on	Camelot.	camelot-sharp
provides	a	C	sharp	implementation	of	Camelot.	The	Contributor's	Guide	has	detailed	information	about	contributing	issues,	documentation,	code,	and	tests.	Camelot	uses	Semantic	Versioning.	For	the	available	versions,	see	the	tags	on	this	repository.	For	the	changelog,	you	can	check	out	the	releases	page.	This	project	is	licensed	under	the	MIT
License,	see	the	LICENSE	file	for	details.	We	use	GitHub	issues	to	keep	track	of	all	issues.	Please	do	not	report	bugs	or	issues	in	this	blog’s	comments.	Instead,	post	them	on	GitHub	as	an	issue.	Before	submitting	a	comment	with	an	issue,	please	use	GitHub	search	to	look	for	existing	issues	(both	open	and	closed)	that	may	be	similar.The	PDF	(Portable
Document	Format)	was	born	out	of	The	Camelot	Project	to	create	“a	universal	way	to	communicate	documents	across	a	wide	variety	of	machine	configurations,	operating	systems	and	communication	networks”.	Basically,	the	goal	was	to	make	documents	viewable	on	any	display	and	printable	on	any	modern	printer.	PDF	was	built	on	top	of	PostScript
(a	page	description	language),	which	had	already	solved	this	“view	and	print	anywhere”	problem.	PDF	encapsulates	the	components	required	to	create	a	“view	and	print	anywhere”	document.	These	include	characters,	fonts,	graphics	and	images.A	PDF	file	defines	instructions	to	place	characters	(and	other	components)	at	precise	x,y	coordinates
relative	to	the	bottom-left	corner	of	the	page.	Words	are	simulated	by	placing	some	characters	closer	than	others.	Similarly,	spaces	are	simulated	by	placing	words	relatively	far	apart.	How	are	tables	simulated	then?	You	guessed	it	correctly	—	by	placing	words	as	they	would	appear	in	a	spreadsheet.The	PDF	format	has	no	internal	representation	of	a
table	structure,	which	makes	it	difficult	to	extract	tables	for	analysis.	Sadly,	a	lot	of	open	data	is	stored	in	PDFs,	which	was	not	designed	for	tabular	data	in	the	first	place!Today,	we’re	pleased	to	announce	the	release	of	Camelot,	a	Python	library	and	command-line	tool	that	makes	it	easy	for	anyone	to	extract	data	tables	trapped	inside	PDF	files!	You
can	check	out	the	documentation	at	Read	the	Docs	and	follow	the	development	on	GitHub.Installation	is	easy!	After	installing	the	dependencies,	you	can	install	Camelot	using	pip	(the	recommended	tool	for	installing	Python	packages):$	pip	install	camelot-pyExtracting	tables	from	a	PDF	using	Camelot	is	very	simple.	Here’s	how	you	do	it.	(Here’s	the
PDF	used	in	the	following	example.)>>>	import	camelot	>>>	tables	=	camelot.read_pdf('foo.pdf')	>>>	tables	>>>	tables.export('foo.csv',	f='csv',	compress=True)	#	json,	excel,	html	>>>	tables[0]	>>>	tables[0].parsing_report	{	'accuracy':	99.02,	'whitespace':	12.24,	'order':	1,	'page':	1	}	>>>	tables[0].to_csv('foo.csv')	#	to_json,	to_excel,	to_html
>>>	tables[0].df	#	get	a	pandas	DataFrame!You	can	also	check	out	the	command-line	interface.Camelot	gives	you	complete	control	over	table	extraction	by	letting	you	tweak	its	settings.Bad	tables	can	be	discarded	based	on	metrics	like	accuracy	and	whitespace,	without	ever	having	to	manually	look	at	each	table.Each	table	is	a	pandas	DataFrame,
which	seamlessly	integrates	into	ETL	and	data	analysis	workflows.You	can	export	tables	to	multiple	formats,	including	CSV,	JSON,	Excel	and	HTML.Many	people	use	open	(Tabula,	pdf-table-extract)	and	closed-source	(smallpdf,	pdftables)	tools	to	extract	tables	from	PDFs.	But	they	either	give	a	nice	output	or	fail	miserably.	There	is	no	in	between.	This
is	not	helpful	since	everything	in	the	real	world,	including	PDF	table	extraction,	is	fuzzy.	This	leads	to	the	creation	of	ad-hoc	table	extraction	scripts	for	each	type	of	PDF	table.We	created	Camelot	to	offer	users	complete	control	over	table	extraction.	If	you	can’t	get	your	desired	output	with	the	default	settings,	you	can	tweak	them	and	get	the	job
done!You	can	check	out	a	comparison	of	Camelot’s	output	with	other	open-source	PDF	table	extraction	libraries.We’ve	often	needed	to	extract	data	trapped	inside	PDFs.The	first	tool	that	we	tried	was	Tabula,	which	has	nice	user	and	command-line	interfaces,	but	it	either	worked	perfectly	or	failed	miserably.	When	it	failed,	it	was	difficult	to	tweak	the
settings	—	such	as	the	image	thresholding	parameters,	which	influence	table	detection	and	can	lead	to	a	better	output.We	also	tried	closed-source	tools	like	smallpdf	and	pdftables,	which	worked	slightly	better	than	Tabula.	But	then	again,	they	also	didn’t	allow	tweaking	and	cost	money.When	these	full-blown	PDF	table	extraction	tools	didn’t	work,	we
tried	pdftotext	(an	open-source	command-line	utility).	pdftotext	extracts	text	from	a	PDF	while	preserving	the	layout,	using	spaces.	After	getting	the	text,	we	had	to	write	Python	scripts	with	complicated	regexes	(regular	expressions)	to	convert	the	text	into	tables.	This	wasn’t	scalable,	since	we	had	to	change	the	regexs	for	each	new	table	layout.We
clearly	needed	a	tweakable	PDF	table	extraction	tool,	so	we	started	developing	one	in	December	2015.	We	started	with	the	idea	of	giving	the	tool	back	to	the	community,	which	had	given	us	so	many	open-source	tools	to	work	with.We	knew	that	Tabula	classifies	PDF	tables	into	two	classes.	It	has	two	methods	to	extract	these	different	classes:	Lattice
(to	extract	tables	with	clearly	defined	lines	between	cells)	and	Stream	(to	extract	tables	with	spaces	between	cells).	We	named	Camelot’s	table	extraction	flavors,	Lattice	and	Stream,	after	Tabula’s	methods.Tabula	uses	a	combination	of	scraping	the	vector	elements	and	raster	lines.	Since	we	wanted	to	use	Python,	OpenCV	was	the	obvious	choice	to	do
image	processing.	After	more	exploration,	we	settled	on	morphological	transformations,	which	gave	the	exact	line	segments.	From	here,	representing	the	table	trapped	inside	a	PDF	was	straightforward.To	get	more	information	on	how	Lattice	and	Stream	work	in	Camelot,	check	out	the	“How	It	Works”	section	of	the	documentation.We’ve	battle	tested
Camelot	by	using	it	in	a	variety	of	projects,	both	for	one-off	and	automated	table	extraction.For	Atlan	Grid,	our	curated	data	from	600+	sources	and	partners,	we	identified	open	data	sources	(primarily	PDF	reports)	for	each	of	the	17	Sustainable	Development	Goals.	For	example,	one	of	our	sources	for	Goal	3	(“Good	Health	and	Well-Being	for	People”)
is	the	National	Family	Health	Survey	(NFHS)	report	released	by	IIPS.	To	get	data	from	these	PDF	sources,	we	created	an	internal	web	interface	built	on	top	of	Camelot,	where	our	data	analysts	could	upload	PDF	reports	and	extract	tables	in	their	preferred	format.We	also	set	up	an	ETL	workflow	using	Apache	Airflow	to	track	disease	outbreaks	in
India.	The	workflow	scrapes	the	Integrated	Disease	Surveillance	Programme	(IDSP)	website	for	weekly	PDFs	of	disease	outbreak	data,	and	then	it	extracts	tables	from	the	PDFs	using	Camelot,	sends	alerts	to	our	team,	and	loads	the	data	into	a	data	warehouse.Camelot	has	some	limitations.	(We’re	developing	solutions!)	Here	are	a	couple	of
them:When	using	Stream,	tables	aren’t	autodetected.	Stream	treats	the	whole	page	as	a	single	table,	which	gives	bad	output	when	there	are	multiple	tables	on	the	page.Camelot	only	works	with	text-based	PDFs	and	not	scanned	documents.	(As	Tabula	explains,	“If	you	can	click-and-drag	to	select	text	in	your	table	in	a	PDF	viewer…	then	your	PDF	is
text-based”.)You	can	check	out	the	GitHub	repository	for	more	information.You	can	help	too	—	every	contribution	counts!	Check	out	the	Contributor’s	Guide	for	guidelines	around	contributing	code,	documentation	or	tests,	reporting	issues	and	proposing	enhancements.	You	can	also	head	to	the	issue	tracker	and	look	for	issues	labeled	“help	wanted”
and	“good	first	issue”.We	urge	organizations	to	release	open	data	in	a	“data	friendly”	format	like	the	CSV.	But	while	tables	are	trapped	inside	PDF	files,	there’s	Camelot	Note:	This	blog	was	updated	on	2nd	November	2018	after	we	learnt	that	Tabula	uses	a	combination	of	scraping	the	vector	elements	and	raster	lines,	and	not	the	Hough	Transform	as
mentioned	in	this	blog.Photo	by	Jason	Wong	on	Unsplash			Camelot	When	working	on	Windows,	the	easiest	way	to	get	up	and	running	is	through	the	Conceptive	Python	SDK.	This	SDK	is	a	Python	distribution	targeted	at	the	development	and	deployment	of	Qt	based	applications.	This	all	in	one	installation	of	Camelot	with	all	its	dependencies	is
available	in	the	shop.	First,	make	sure	you	have	setup	tools	installed,	Setup	tools.	If	you	are	using	a	debian	based	distribution,	you	can	type:	sudo	apt-get	install	python-setuptools	Then	use	easy_install	to	install	Camelot,	under	Linux	this	would	be	done	by	typing:	sudo	easy_install	camelot	Linux	distributions	often	offer	packages	for	various
applications,	including	Camelot	and	its	dependencies	:	When	installing	Camelot	from	source,	you	need	to	make	sure	all	dependencies	are	installed	and	available	in	your	PYTHONPATH.	Dependencies	In	addition	to	PyQt	4.8	and	Qt	4.8,	Camelot	needs	these	libraries	:	SQLAlchemy==1.0.8	Jinja2==2.7.2	chardet==2.2.1	xlwt-future==0.8.0	xlrd==0.9.3
six==1.10.0	pycrypto==2.6.1	Releases	The	source	code	of	a	release	can	be	downloaded	from	the	Python	Package	Index	and	then	extracted:	tar	xzvf	Camelot-10.07.02.tar.gz	Repository	The	latest	and	greatest	version	of	the	source	can	be	checked	out	from	the	Bitbucket	repository:	hg	clone	Adapting	PYTHONPATH	You	need	to	make	sure	Camelot	and
all	its	dependencies	are	in	the	PYTHONPATH	before	you	start	using	it.	To	verify	if	you	have	Camelot	installed	and	available	in	the	PYTHONPATH,	fire	up	a	python	interpreter:	and	issue	these	commands:	>>>	import	camelot	>>>	print	camelot.__version__	>>>	import	sqlalchemy	>>>	print	sqlalchemy.__version__	>>>	import	PyQt4	None	of	them
should	raise	an	ImportError.	©	Copyright	2009	-	2014,	Conceptive	Engineering.	Last	updated	on	Dec	19,	2016.	Sphinx	theme	provided	by	Read	the	Docs


