
	

https://wabasiputupame.tugoduzak.com/819049542266403092904089783772938054486166?benuruwusenavavarawinodaxumedikumo=guxoraxodaserugegezugotexevuxozojomixuvebenolabuvafuburiruponasejibedinuguwurololagobotoworatimefatawubiwoxapekakujatetapotemoletudogiruzusugewusodarovipupezipudetatagomugedavuvarikovalibakojurolowunatukofura&utm_term=cosmos+db+delete+all+documents+c%23&luzoxogetaxakevigeroxapejugife=jafakolubomezelunawiduwojetositidavadepewigutojobimomosumibewamagomusobewogozijozemodeliwosorinakusuroladokurodamebokibavefekuboremifazotonebiki

Cosmos	DB	is	a	fully	managed	NoSQL	database	service	that	offers	high	availability,	scalability,	and	performance.	It	is	a	popular	choice	for	developers	who	need	to	store	and	query	large	amounts	of	data.	One	of	the	most	common	tasks	that	developers	need	to	perform	on	Cosmos	DB	is	to	delete	data.	In	this	article,	we	will	discuss	how	to	delete	data
from	Cosmos	DB	using	a	delete	query.	We	will	start	by	providing	a	brief	overview	of	Cosmos	DB	and	delete	queries.	Then,	we	will	walk	through	an	example	of	how	to	delete	data	from	a	Cosmos	DB	database.	Finally,	we	will	discuss	some	of	the	best	practices	for	using	delete	queries	in	Cosmos	DB.	Cosmos	DB	Cosmos	DB	is	a	fully	managed	NoSQL
database	service	that	offers	high	availability,	scalability,	and	performance.	It	is	a	popular	choice	for	developers	who	need	to	store	and	query	large	amounts	of	data.	Cosmos	DB	supports	a	variety	of	data	models,	including	document,	key-value,	and	graph.	It	also	supports	multiple	consistency	models,	so	developers	can	choose	the	level	of	consistency
that	best	meets	their	needs.	Delete	queries	A	delete	query	is	a	query	that	deletes	data	from	a	Cosmos	DB	database.	Delete	queries	can	be	used	to	delete	data	from	a	single	document,	a	collection	of	documents,	or	an	entire	database.	Example	The	following	is	an	example	of	a	delete	query	that	deletes	a	document	from	a	Cosmos	DB	database:	DELETE
FROM	c	WHERE	id	=	‘my-document-id’	This	query	will	delete	the	document	with	the	ID	`my-document-id`	from	the	collection	`c`.	Best	practices	When	using	delete	queries	in	Cosmos	DB,	it	is	important	to	follow	some	best	practices	to	ensure	that	your	data	is	deleted	correctly	and	efficiently.	Use	the	`IF	EXISTS`	clause	to	avoid	deleting	documents
that	do	not	exist.	Use	the	`LIMIT`	clause	to	limit	the	number	of	documents	that	are	deleted.	Use	the	`OFFSET`	clause	to	skip	over	documents	that	you	do	not	want	to	delete.	Use	the	`PARTITION	KEY`	and	`ROW	KEY`	clauses	to	delete	documents	from	specific	partitions	or	rows.	By	following	these	best	practices,	you	can	ensure	that	your	delete
queries	are	efficient	and	effective.	Cosmos	DB	Delete	Query	Description	Example	DELETE	FROM	WHERE	;	Deletes	all	documents	in	the	collection	that	match	the	specified	filter.	DELETE	FROM	myCollection	WHERE	age	>	30;	DELETE	FROM	WHERE	=	;	Deletes	all	documents	in	the	collection	that	have	the	specified	partition	key	value.	DELETE
FROM	myCollection	WHERE	partitionKey	=	‘my-partition-key’;	DELETE	FROM	WHERE	;	Deletes	the	document	with	the	specified	document	ID.	DELETE	FROM	myCollection	WHERE	documentId	=	‘my-document-id’;	Cosmos	DB	is	a	fully	managed	NoSQL	database	service	that	offers	high	availability,	scalability,	and	performance.	Cosmos	DB	supports
a	variety	of	data	models,	including	documents,	graphs,	and	key-value	pairs.	You	can	use	Cosmos	DB	to	store	and	query	data	from	a	variety	of	sources,	including	applications,	websites,	and	IoT	devices.	One	of	the	most	common	operations	you	will	need	to	perform	on	a	Cosmos	DB	database	is	deleting	documents.	Cosmos	DB	provides	a	number	of	ways
to	delete	documents,	including	using	the	Azure	Portal,	the	Cosmos	DB	API,	and	the	Cosmos	DB	CLI.	In	this	tutorial,	you	will	learn	how	to	delete	documents	from	a	Cosmos	DB	database	using	the	Cosmos	DB	delete	query.	What	is	a	Cosmos	DB	delete	query?	A	Cosmos	DB	delete	query	is	a	SQL	statement	that	deletes	one	or	more	documents	from	a
Cosmos	DB	database.	The	syntax	of	a	Cosmos	DB	delete	query	is	similar	to	the	syntax	of	a	SQL	delete	statement.	The	following	is	an	example	of	a	Cosmos	DB	delete	query:	DELETE	FROM	mydb.mycollection	WHERE	id	=	‘myid’	This	query	will	delete	the	document	with	the	id	`myid`	from	the	collection	`mycollection`	in	the	database	`mydb`.	How	to
write	a	Cosmos	DB	delete	query?	To	write	a	Cosmos	DB	delete	query,	you	must	first	specify	the	database	and	collection	that	you	want	to	delete	documents	from.	You	can	do	this	by	using	the	`FROM`	clause.	The	following	is	an	example	of	the	`FROM`	clause:	FROM	mydb.mycollection	Once	you	have	specified	the	database	and	collection,	you	can	use
the	`DELETE`	keyword	to	delete	documents	from	the	collection.	The	following	is	an	example	of	the	`DELETE`	keyword:	DELETE	FROM	mydb.mycollection	You	can	use	the	`WHERE`	clause	to	specify	the	documents	that	you	want	to	delete.	The	`WHERE`	clause	can	be	used	to	filter	documents	by	their	id,	properties,	or	tags.	The	following	is	an
example	of	the	`WHERE`	clause:	DELETE	FROM	mydb.mycollection	WHERE	id	=	‘myid’	This	query	will	delete	the	document	with	the	id	`myid`	from	the	collection	`mycollection`.	You	can	also	use	the	`LIMIT`	clause	to	limit	the	number	of	documents	that	are	deleted.	The	`LIMIT`	clause	can	be	used	to	delete	a	specific	number	of	documents,	or	to
delete	all	documents	up	to	a	certain	point.	The	following	is	an	example	of	the	`LIMIT`	clause:	DELETE	FROM	mydb.mycollection	LIMIT	10	This	query	will	delete	the	first	10	documents	from	the	collection	`mycollection`.	In	this	tutorial,	you	learned	how	to	delete	documents	from	a	Cosmos	DB	database	using	the	Cosmos	DB	delete	query.	You	learned
how	to	specify	the	database	and	collection,	how	to	use	the	`DELETE`	keyword,	and	how	to	use	the	`WHERE`	and	`LIMIT`	clauses.	For	more	information	on	Cosmos	DB	delete	queries,	please	refer	to	the	following	resources:	[Cosmos	DB	documentation]([Cosmos	DB	API	reference]([Cosmos	DB	CLI	reference](3.	Examples	of	Cosmos	DB	delete
queries	The	following	are	some	examples	of	Cosmos	DB	delete	queries:	*	**Delete	all	documents	from	a	collection:**	DELETE	FROM	customers	*	**Delete	all	documents	from	a	collection	that	match	a	certain	criteria:**	DELETE	FROM	customers	WHERE	age	>	21	Delete	a	specific	document	from	a	collection:	DELETE	FROM	customers	WHERE	id	=
‘12345678-90ab-cdef-1234-567890abcdef’	Delete	multiple	documents	from	a	collection:	DELETE	FROM	customers	WHERE	id	IN	(‘12345678-90ab-cdef-1234-567890abcdef’,	‘23456789-0123-4567-8901-234567890abcdef’)	**	4.	Tips	for	writing	Cosmos	DB	delete	queries	When	writing	Cosmos	DB	delete	queries,	there	are	a	few	things	to	keep	in	mind:	*
Use	the	`WHERE`	clause	to	specify	the	documents	that	you	want	to	delete.	The	`WHERE`	clause	allows	you	to	filter	the	documents	that	are	deleted.	For	example,	the	following	query	deletes	all	documents	from	the	`customers`	collection	that	have	the	`age`	property	greater	than	21:	DELETE	FROM	customers	WHERE	age	>	21	Use	the	`LIMIT`
clause	to	limit	the	number	of	documents	that	you	delete.	The	`LIMIT`	clause	allows	you	to	specify	the	maximum	number	of	documents	that	are	deleted.	For	example,	the	following	query	deletes	the	first	10	documents	from	the	`customers`	collection:	DELETE	FROM	customers	LIMIT	10	Use	the	`OFFSET`	clause	to	skip	the	first	n	documents.	The
`OFFSET`	clause	allows	you	to	skip	the	first	n	documents	from	the	collection.	For	example,	the	following	query	deletes	the	documents	from	the	`customers`	collection	starting	with	the	11th	document:	DELETE	FROM	customers	OFFSET	10	Use	the	`ORDER	BY`	clause	to	order	the	documents	before	deleting	them.	The	`ORDER	BY`	clause	allows	you
to	order	the	documents	before	they	are	deleted.	For	example,	the	following	query	deletes	the	documents	from	the	`customers`	collection	in	descending	order	by	the	`age`	property:	DELETE	FROM	customers	ORDER	BY	age	DESC	**	Cosmos	DB	delete	queries	can	be	used	to	delete	documents	from	a	collection.	By	using	the	`WHERE`,	`LIMIT`,
`OFFSET`,	and	`ORDER	BY`	clauses,	you	can	control	the	documents	that	are	deleted.	Q:	What	is	a	Cosmos	DB	delete	query?	A	Cosmos	DB	delete	query	is	a	SQL	query	that	deletes	one	or	more	documents	from	a	Cosmos	DB	database.	The	delete	query	uses	the	`DELETE`	keyword	followed	by	the	document’s	partition	key	and	the	document’s	unique
identifier	(_rid).	For	example,	the	following	delete	query	deletes	the	document	with	the	partition	key	`”my-partition-key”`	and	the	_rid	`”my-rid”`:	DELETE	FROM	my-container	WHERE	partitionKey	=	‘my-partition-key’	AND	_rid	=	‘my-rid’	Q:	How	do	I	use	a	Cosmos	DB	delete	query	to	delete	all	documents	in	a	container?	To	delete	all	documents	in	a
container,	you	can	use	the	following	delete	query:	DELETE	FROM	my-container	This	query	will	delete	all	documents	in	the	`my-container`	container,	regardless	of	their	partition	key	or	_rid.	Q:	What	are	the	limitations	of	Cosmos	DB	delete	queries?	There	are	a	few	limitations	to	Cosmos	DB	delete	queries.	First,	you	can	only	delete	one	document	at	a
time.	Second,	you	cannot	use	a	delete	query	to	delete	a	document	that	is	being	updated	or	deleted	by	another	client.	Third,	you	cannot	use	a	delete	query	to	delete	a	document	that	is	locked	by	another	client.	Q:	How	can	I	use	Cosmos	DB	delete	queries	to	improve	performance?	You	can	use	Cosmos	DB	delete	queries	to	improve	performance	by
batching	together	multiple	delete	queries.	This	can	reduce	the	number	of	round	trips	to	the	database	and	improve	the	overall	performance	of	your	application.	You	can	also	use	Cosmos	DB	indexes	to	improve	the	performance	of	your	delete	queries.	By	indexing	the	fields	that	you	use	in	your	delete	queries,	you	can	reduce	the	number	of	documents
that	need	to	be	scanned	to	find	the	documents	that	you	want	to	delete.	Q:	What	are	the	best	practices	for	using	Cosmos	DB	delete	queries?	Here	are	a	few	best	practices	for	using	Cosmos	DB	delete	queries:	Use	batching	to	improve	performance.	Use	indexes	to	improve	performance.	Avoid	deleting	documents	that	are	being	updated	or	deleted	by
another	client.	Avoid	deleting	documents	that	are	locked	by	another	client.	In	this	blog	post,	we	discussed	how	to	delete	documents	from	a	Cosmos	DB	database	using	the	Cosmos	DB	delete	query.	We	covered	the	syntax	of	the	delete	query,	as	well	as	some	best	practices	for	using	it.	We	also	provided	an	example	of	how	to	use	the	delete	query	to
delete	a	document	from	a	Cosmos	DB	database.	We	hope	that	this	blog	post	has	been	helpful	in	understanding	how	to	delete	documents	from	a	Cosmos	DB	database	using	the	Cosmos	DB	delete	query.	If	you	have	any	questions	or	comments,	please	feel	free	to	leave	them	below.	Marcus	Greenwood	Hatch,	established	in	2011	by	Marcus	Greenwood,
has	evolved	significantly	over	the	years.	Marcus,	a	seasoned	developer,	brought	a	rich	background	in	developing	both	B2B	and	consumer	software	for	a	diverse	range	of	organizations,	including	hedge	funds	and	web	agencies.	Originally,	Hatch	was	designed	to	seamlessly	merge	content	management	with	social	networking.	We	observed	that	social
functionalities	were	often	an	afterthought	in	CMS-driven	websites	and	set	out	to	change	that.	Hatch	was	built	to	be	inherently	social,	ensuring	a	fully	integrated	experience	for	users.	Now,	Hatch	embarks	on	a	new	chapter.	While	our	past	was	rooted	in	bridging	technical	gaps	and	fostering	open-source	collaboration,	our	present	and	future	are	focused
on	unraveling	mysteries	and	answering	a	myriad	of	questions.	We	have	expanded	our	horizons	to	cover	an	extensive	array	of	topics	and	inquiries,	delving	into	the	unknown	and	the	unexplored.	Azure	Cosmos	DB	is	a	database	service	that	is	globally	distributed.	It	allows	you	to	manage	your	data	even	if	you	keep	them	in	data	centers	that	are	scattered
throughout	the	world.	It	provides	the	tools	you	need	to	scale	both	global	distribution	pattern	and	computational	resources,	and	these	tools	are	provided	by	Microsoft	Azure.Azure	Storage	offers	a	NoSQL	key-value	store	for	semi-structured	data.	Unlike	a	traditional	relational	database,	each	entity	(such	as	a	row	—	in	relational	database	terminology)
can	have	a	different	structure,	allowing	your	application	to	evolve	without	downtime	to	migrate	between	schema.Food	For	ThoughtIf	your	application	runs	for	multiple	years.	It	accumulates	lot	of	data	documents	on	cosmos	which	are	no	longer	useful.	Therefore,	we	need	a	way	to	clean	up	the	obsolete	data	documents.	In	this	post,	let	us	look	at	the
way	to	write	a	stored	procedure	on	cosmos	DB	for	bulk	delete	and	call	it	using	the	ASP.NET	Core.Citation	Note:	The	bulk	delete	stored	proc	is	being	used	from	the	from	Azure	documentation.	Thanks	to	Andrew	LiuSteps	to	create	stored	procRight	click	on	the	stored	procedure	folder	to	create	and	give	it	a	proper	nameI	named	the	proc	as	BulkDelete.
This	is	how	it	looks	after	creating	a	proc.NOTE	:	Stored	Procedures	on	Cosmos	are	written	in	JavaScriptStored	procedure	to	bulk	delete.Here	is	the	Gist	of	codeBulk	delete	proc	expects	the	query	which	gives	it	the	bulk	documents	to	delete	from.	Just	pass	in	the	query	to	proc.	It	will	delete	the	documents.Note:	If	your	collection	is	partitioned.	Then	it
expects	the	partition	key	value	to	be	passed	to	it.	Again,	it	expects	the	value	not	the	key	name	that	it	is	partitioned	with.Now	we	have	the	proc	ready	to	delete	the	documents.	Lets	see	how	to	use	it	on	.NET	.If	you	follow	the	repository	design	pattern	in	your	application.	Create	a	method	inside	the	repository	and	later	call	it	in	service.Link	for	the
gistFirst,	we	have	to	open	the	connection	by	using	statement.	The	using	statement	is	actually	a	syntactic	convenience.	At	compile	time,	the	language	compiler	implements	the	intermediate	language	(IL)	for	a	try/catch	block.	To	connect,	we	have	to	use	DocumentClient	Class	from	Microsoft.Azure.Documents.	This	Client	has	all	the	methods	to	create
document,	query	for	documents	etc.	More	documentation	for	document	client	class	can	be	found	here.Now	you	connected	to	the	database	on	the	cosmos.	Next	step	is	to	know	where	the	proc	is	in	that	database.	So,	we	can	use	the	CreateStoredProcedureQuery	to	get	proc.	This	method	takes	in	URI	of	the	database	and	collection	ID,	stored	proc	name
and	other	feed	options(we	need	these	during	cross	partition	querying).	And,	it	returns	the	Query	result	of	type	IQueryable.After	we	have	the	proc.	We	can	call	ExecuteStoredProcedureAsync	on	document	client	class	to	execute	the	proc.	This	method	takes	in	the	GUID	of	the	proc	and	NOT	the	proc	name.	We	will	have	access	to	the	GUID	from	the
createstoredprocquery	method	we	wrote	previously,	which	is	stored	in	sprocLink	variable.	How	to	use	the	GUID	from	it?	there	is	property	on	it	‘_self’	we	can	pass	in	sprocLink._self	and	what	ever	inputs	the	proc	takes.NOTE:	If	you	have	the	partition	keys	on	your	collection,	you	should	query	for	the	partition	keys	and	pass	in	the	partition	key	as	the
request	options	for	the	proc.	(Let	me	know	if	there	is	any	other	optimal	solution,	I’m	open	to	learn.)ConclusionIn	this	post,	we	learnt	how	to	write	the	stored	procedures	on	Azure	Cosmos	and	also	how	to	integrate	and	use	the	procedures	on	.NET.Thank	you	for	reading	the	post,Something	somewhere	incredible	is	waiting	to	be	known!	Share	—	copy
and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and
indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or
technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for
your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	I	have	been	working	with	couple	of	applications	built	with	CosmosDB	and	one	of	the	things	that	surprised	me	was	one	cannot	clear	all	documents	in	a	collection	from	the	Azure	web	portal	or	using	the	Storage	Explorer.	As	I	was
struggling	to	do	this	while	doing	some	tests	on	the	application	I	decided	to	write	a	blog	on	the	solution	I	used.	There	are	two	ways	to	achieve	the	same	Using	a	stored	procedureUsing	Cosmosdb	SDK	I	came	up	with	a	script	in	Node	which	can	be	done	with	any	of	the	programming	languages	such	as	C#,Python	supported	by	the	SDK	Let’s	go	through
the	steps:	Step	1:	Open	VScode	and	Create	a	file	named	cosmosdb_helper.js	Step	2:	Let’s	install	the	necessary	packages	needed.	Install	documentdb	javascript	sdk	with	the	following	command,	npm	i	documentdb	and	you	will	see	the	output	as	follows	Let’s	install	require	to	handle	the	dependencies	with	the	following	command,	npm	i	require	and	you
will	see	the	output	as	follows,	Step	3:		Let’s	do	some	coding.	You	will	be	able	to	understand	the	following	code	with	the	comments	added	on	each	line,	Suppose	if	you	have	partitionKey	created	with	your	collection,	you	need	to	pass	queryoptions	with	the	partitionKey	in	selectAll	as	well	as	deletDocument	as	follows,	Step	4:	Let’s	run	the	script	and	see
the	output,	You	can	run	the	helper	script	as	follows,	if	you	want	to	list	all	documents	in	the	collection,	node	cosmosdb_helper.js	selectAll	which	will	list	the	output	of	all	documents	in	the	collection.	If	you	want	to	delete	all	documents	within	a	collection,	you	can	run	the	script	as,	node	cosmosdb_helper.js	deletAll	which	will	remove	all	documents	in	the
collection.	As	mentioned	above,	2nd	way	is	to	use	the	stored	procecure	given	by	Microsoft	employee	as	mentioned	here.	Hope	the	helper	script	will	help	someout	out	there	in	order	to	delete	all	documents	in	a	collection.	You	can	get	the	whole	code	from	Cosmosd_Helper	Cosmos	is	Microsoft’s	NoSQL	database	offering	on	the	Azure	Cloud	platform.	If
your	application	data	needs	are	relatively	simple,	then	Cosmos	is	an	excellent	choice.Scenario	and	motivation	for	this	articleYou	have	a	Customers	collection.	You	want	to	delete	all	records	using	a	simple	DELETE	statement.	Sorry,	thats	not	possible.	Cosmos	does	not	support	DELETE	statements.Wish	list!!	This	does	not	workLack	of	support	for
DELETE	and	UPDATEUnfortunately	Cosmos	does	not	support	the	DELETE	statement.	In	a	traditional	SQL	world	you	would	have	done	the	following:DELETE	FROM	Customers	c	WHERE	c.Country="USA"Why	is	this	a	problem?You	now	need	to	write	some	custom	code!	Yes!	This	would	have	been	a	one-liner	in	RDBMS	world.	But	for	Cosmos,	this
entails	significant	code	writing.Option	1	—	Javascript	stored	proceduresCosmos	supports	stored	procedures	stored	proc	for	bulk	deletionHow	to	execute	a	stored	procedure?Drawbacks	with	stored	procedures?I	find	them	hard	to	develop	and	debugDifficult	to	automate	the	execution	of	Cosmos	stored	proces	via	CI/CDOption	2	—	PowerShell	to	the
rescueFortunately,	the	community	has	come	to	the	rescue.	Here	is	a	very	cute	PowerShell	module	that	interacts	with	Cosmos	via	the	REST	interfaceWiki	documentation	on	various	cmdletsHow	to	install	the	module?I	always	recommend	using	the	CurrentUser	scope.	This	is	the	path	of	least	resistance.Install-Module	-Scope	CurrentUser	-Name
CosmosDBExample	JSON{"id":	"1002","firstName":	"John1002","lastName":	"Doe1002"}This	will	delete	all	records	in	the	specified	Cosmos	collection.	Useful	in	a	dev-test	scenario.	You	want	to	clean	up	the	dev-test	system	to	be	free	of	any	noisy	data	that	might	have	crept	in	from	previous	test	runs.Set-StrictMode	-Version	"latest"Clear-Host.
$PSScriptRoot\common.ps1Write-Host	"Getting	Cosmos	context"$CosmosContext=New-CosmosDbContext	-Database	$Global:CustomersManagementDatabase	-ResourceGroupName	$Global:CosmosResourceGroup	-Account	$Global:CosmosAccountNameWrite-Host	("Got	Cosmos	context	for	Cosmos	account:	'{0}'	and	database:	'{1}'"	-f
$CosmosContext.Account,	$CosmosContext.Database)function	GetAllDocuments	{#Remember	to	include	Partition	key	path	in	field	list$allDocs	=	Get-CosmosDbDocument	-CollectionId	$Global:CustomersMasterContainer	-QueryEnableCrossPartition	$true	-Query	"SELECT	c.id	FROM	c"	-Context	$CosmosContextif	($null	-eq	$allDocs){return
,@()}return	$allDocs}function	DeleteDocuments	{param	($documents)foreach	($doc	in	$documents)	{#Remember	to	specify	Partition	keyRemove-CosmosDbDocument	-Context	$CosmosContext	-CollectionId	$Global:CustomersMasterContainer	-Database	$Global:CustomersManagementDatabase	-Id	$doc.id	-PartitionKey
$doc.id}}$documents=GetAllDocumentsWrite-Host	("Found	{0}	documents	in	the	Container	{1}"	-f	$documents.length,$Global:CustomersMasterContainer)DeleteDocuments	-documents	$documentsWrite-Host	"Deletion	complete"Scenario	—	Seed	a	Collection	with	documentsThis	will	pre-populate	a	Collection	with	JSON	documents.	This	is	helpful
when	you	want	to	prepopulate	your	dev-test	database	with	good	quality	baseline	dataSet-StrictMode	-Version	"latest"Clear-Host.	$PSScriptRoot\common.ps1Write-Host	"Getting	Cosmos	context"$CosmosContext=New-CosmosDbContext	-Database	$Global:CustomersManagementDatabase	-ResourceGroupName	$Global:CosmosResourceGroup	-
Account	$Global:CosmosAccountNameWrite-Host	("Got	Cosmos	context	for	Cosmos	account:	'{0}'	and	database:	'{1}'"	-f	$CosmosContext.Account,	$CosmosContext.Database)$jsonFiles=Get-ChildItem	-Path	$PSScriptRoot\json\	-Filter	*.json	-RecurseWrite-Host	("Found	{0}	json	files"	-f	$jsonFiles.Length)foreach	($jsonFile	in	$jsonFiles)
{$docContents=[system.io.file]::ReadAllText($jsonFile)$jsonObject=$docContents	|	ConvertFrom-JsonNew-CosmosDbDocument	-Context	$CosmosContext	-CollectionId	$Global:CustomersMasterContainer	-DocumentBody	$docContents	-PartitionKey	$jsonObject.idWrite-Output	"Created	document	from	file	$jsonFile"}Advantages	of	PowerShell
approach	over	Stored	procesEasy	to	debug.	All	you	need	is	Visual	Studio	Code	and	PowerShell	CorePowerShell	core	is	cross	OSVery	easy	to	automate	via	CI/CD.You	will	find	accompanying	PowerShell	scripts	in	this	repo:	to	run	the	accompanying	PowerShell	scripts?Clone	this	repositoryNavigate	to	the	folder	which	contains	this	README.MD
fileLaunch	PowerShell	CoreEnsure	you	have	the	core	modules	installedChange	the	variables	in	Common.ps1	to	point	to	your	Cosmos	accountCreate	a	Cosmos	account	by	runnning	the	script	CreateCosmos.ps1Create	a	database	and	a	collection	(refer	variables	in	Commons.ps1)Run	PopulateCollection.ps1	You	should	now	see	2	documents
createdPurge	all	documents	in	the	containerRun	DeleteAllRecords.ps1PowerShell	modules	neccessaryAz.AccountsAz.ResourcesAz.CosmosDbCosmosDbChange	the	following	variables	in	the	file	Common.ps1	to	suit	your	environment.Set-StrictMode	-Version	"2.0"$ErrorActionPreference="Stop"$Global:CosmosResourceGroup="rg-demo-cosmos-
serverless"$Global:CosmosAccountName="saudemocosmosserverless"$Global:CustomersManagementDatabase="CustomerManagement"$Global:CustomersMasterContainer="customers"$Global:Location="uksouth"	While	working	on	a	project,	I	came	across	a	use	case	to	bulk	delete	documents	in	Azure	Cosmos	DB	Container	using	Azure	Data
Factory	(ADF).	There	are	few	approaches,	however	it	mainly	involves	either	implementing	a	stored	procedure	or	a	function.	This	article	provides	the	steps	to	implement	bulk	delete	of	documents	in	Cosmos	DB	entirely	in	a	ADF	flow.	Azure	Cosmos	DB	SQL	API	has	a	large	quantity	of	documents.	The	Azure	Data	Factory	pipeline	requires	to	bulk	delete
documents	before	loading	new	set	of	documents	Access	to	Azure	CloudA	data	source,	either	a	csv	file	or	excel	file	with	the	dataA	data	sink,	Cosmos	DB	SQL	API	instanceADF	pipeline	that	extracts	the	source,	transforms	the	data	from	the	source	and	loads	into	Cosmos	DB	sink	i.	Add	source	pointing	to	the	Cosmos	DB	container	that	has	records	to	be
deleted	ii.	Go	to	the	‘Source	options’	for	the	source	and	select	‘Query’	so	you	can	enter	the	SQL	query	that	will	retrieve	the	documents	to	delete.	In	the	example	here,	I	am	selecting	all	3	bedroom	home	listing	so	those	can	be	deleted	from	Cosmos	DB	iii.	Add	‘Alter	Row’	transformation	to	the	source	and	go	to	‘Alter	row	settings’.	Select	‘Delete	if’	under
‘Alter	row	conditions’	and	enter	‘true()’	in	the	expression	iv.	Add	sink	pointing	to	the	same	Cosmos	DB	container	v.	Go	to	sink	settings	and	select	‘Allow	delete’	under	‘Update	method’.	If	Cosmos	DB	has	a	large	set	of	documents	to	delete,	provide	‘Batch	size’	to	split	the	deletion	To	bulk	delete	documents	in	Azure	Cosmos	DB,	Azure	Data	Factory
provides	easier	approach	because	the	flow	is	entirely	in	the	data	factory	and	it	does	not	call	external	stored	procedures	or	functions.	This	also	allows	better	control	over	the	data	flow	and	provides	better	troubleshooting	mechanism	in	case	of	any	errors	If	you	need	to	delete	all	documents	from	a	container	in	Cosmos	DB	from	the	portal	you	can	set	the
Time	to	Live	value	to	1	sec	for	all	items	in	the	container.Setting	TTL	to	1	will	cause	Cosmos	to	automatically	begin	deleting	all	items	in	a	container	without	you	needing	to	issue	an	explicit	delete	from	a	client	application	(or	deleting	items	one	by	one).	How	you	can	configure	TTL	for	Cosmos	is	below	…As	noted	by	Microsoft	…Deletion	of	expired	items
is	a	background	task	that	consumes	left-over	Request	Units.Even	after	the	TTL	has	expired,	if	the	container	is	overloaded	with	requests	and	if	there	aren’t	enough	RU’s	available,	the	data	deletion	is	delayed.	Data	is	deleted	once	there	are	enough	RUs	available	to	perform	the	delete	operation.	Data	is	not	returned	by	any	queries	(by	any	API)	after	the
TTL	has	expired	even	if	the	delete	is	delayed.	…	so	after	setting	the	TIL	to	1	give	it	a	few	minutes	to	finish.

