
	

https://wusidatiz.maxudijuz.com/699887587109424430591804901132403681884639?wixijarukapujefekixezunefavoborufutojejelofolalajatasifegugemefezaxofemuzufenebuk=susarifiwofedebabifigikatojonoketerematolikodifagokowiwuzanaxunimekoderetujujadopapelulekovupusexovuvaremelapajafajapipumabudikenovemumixekalirojuxibowaziliwofarasuxabebawodasadafavufuviruzekurajifejavetijo&utm_kwd=qradar+advanced+search+examples&pizomakorebugikanibutokasadujipugigidokubelezilirozijutek=jedatezumegulibekaresujedizenixulazadetakipobasiduzojoxevefebesawaxulomusavojatewezebomekejubanawuvetokelepuwogeridunuvumewawibavopejiwerenilegevosed

The	QRadar	Build	Query	and	Search	playbook	creates	an	AQL	query	for	the	QRadar	SIEM	using	the	QRadarCreateAQLQuery	automation	queries.	Complex	queries	take	into	consideration	several	inputs	and	allow	including	or	excluding	each	of	the	values	as	well	as	performing	a	full	or	partial	search.	Each	of	the	values	can	be	searched	across	several
fields.The	playbook	supports	3	separate	conditions	to	be	evaluated.For	example,	in	the	first	condition,	inputs	will	evaluate	several	user	names	that	may	or	may	not	exist	in	several	fields.	The	second	input,	can	for	example,	evaluate	for	IP	addresses	in	several	fields	that	may	or	may	not	exist	in	several	fields,	and	a	third	value	can	search	for	an	event	ID
that	may	or	may	not	exist	in	several	fields.	The	results	of	all	of	the	inputs	will	create	an	AQL	query	that	covers	all	of	the	inputs	combining	all	of	the	different	conditions.Each	of	the	inputs	is	validated	so	in	case	the	inputs	are	not	set	correctly,	the	user	can	review	and	run	them	again.Also,	populated	inputs	will	be	combined,	meaning	by	populating	the
first	and	second	values	the	resulting	AQL	query	will	be	a	combination	of	all	of	the	values	and	not	3	separate	searches.	In	addition,	make	sure	to	populate	the	inputs	in	order	according	to	the	indexed	fields	in	QRadar	(indexed	fields	should	be	provided	before	non	indexed	ones).Dependencies#This	playbook	uses	the	following	sub-playbooks,
integrations,	and	scripts.Sub-playbooks#QRadar	Get	Hunting	ResultsIntegrations#Scripts#Commands#qradar-search-retrieve-eventsPlaybook	Inputs#NameDescriptionDefault	ValueRequiredBaseValuesToSearchThe	values	of	the	first	field	to	search.	This	can	be	a	single	value	or	a	comma-separated	list	of	values.	For	example,
admin1,admin2OptionalBaseFieldsToSearchThe	field	names	of	the	first	field	to	search.	This	can	be	a	single	value	or	a	comma-separated	list	of	values.	For	example,	username,userOptionalBaseFieldStateThe	state	of	the	first	field	to	search,	meaning	whether	the	values	in	the	field	be	included	or	excluded.	Valid	options	are	include	or
exclude.includeOptionalBaseFieldMatchWhether	the	values	of	the	first	field	should	be	an	exact	match	or	a	partial	match.	Valid	options	are	exact	or	partial.	When	choosing	exact,	the	AQL	query	will	use	the	=	operator.	When	choosing	partial,	the	AQL	query	will	ILIKE	and	add	'%%'	to	the	values.	Notice	that	if	you	choose	exact	you	will	have	to	specify
the	BaseFieldsToSearch	as	well.exactOptionalFirstAdditionalValuesThe	values	of	the	second	field	to	search.	This	can	be	a	single	value	or	a	comma-separated	list	of	values.	For	example	admin1,admin2OptionalFirstAdditionalFieldsThe	field	names	of	the	second	field	to	search.	This	can	be	a	single	value	or	a	comma-separated	list	of	values.	For	example
admin1,admin2OptionalFirstAdditionalFieldStateThe	state	of	the	second	field	to	search,	meaning	whether	the	values	in	the	field	should	be	included	or	excluded.	Valid	options	are	include	or	exclude.	Notice	that	if	you	choose	exact	you	will	have	to	specify	the	FirstAdditionalFields	as	well.includeOptionalFirstAdditionalFieldMatchWhether	the	values	of
the	second	field	should	be	an	exact	match	or	a	partial	match.	Valid	options	are	exact	or	partial.exactOptionalSecondAdditionalValuesThe	values	of	the	third	field	to	search.	This	can	be	a	single	value	or	a	comma-separated	list	of	values.	For	example	admin1,admin2OptionalSecondAdditionalFieldsThe	field	names	of	the	third	field	to	search.	This	can	be
a	single	value	or	a	comma-separated	list	of	values.	For	example	username,userOptionalSecondAdditionalFieldStateThe	state	of	the	third	field	to	search,	meaning	should	the	values	in	the	field	be	included	or	excluded.	Valid	options	are	include	or	exclude.includeOptionalSecondAdditionalFieldMatchShould	the	values	of	the	third	field	be	an	exact	match
or	a	partial	match.	Valid	options	are	exact	or	partial.	When	choosing	exact,	the	AQL	query	will	use	the	=	operator.	When	choosing	partial,	the	AQL	query	will	ILIKE	and	add	'%%'	to	the	values.	Notice	that	if	you	choose	exact	you	will	have	to	specify	the	SecondAdditionalFields	as	well.exactOptionalSelectFieldsThe	list	of	fields	to	select	within	the	AQL
query.The	default	fields	areDATEFORMAT(devicetime,'dd-MM-yyyy	hh:mm'),LOGSOURCENAME(logsourceid),CATEGORYNAME(category),QIDNAME(qid),sourceip,destinationip,usernameDATEFORMAT(devicetime,'dd-MM-yyyy
hh:mm'),LOGSOURCENAME(logsourceid),CATEGORYNAME(category),QIDNAME(qid),sourceip,destinationip,usernameOptionalTimeFrameTime	frame	as	used	in	AQL.For	example:LAST	7	DAYSSTART	'2019-09-25	15:51'	STOP	'2019-09-25	17:51'For	more	examples,	see	IBM's	AQL	documentation.LAST	1	HOURSOptionalUseHuntingResultsThe
QRadar	Get	Hunting	Results	playbook	outputs	the	detected	hosts,	users,	and	IP	addresses	detected	in	the	QRadar	search	results.falseOptionalPlaybook	Outputs#PathDescriptionTypeQRadar.SearchEventsThe	result	of	the	search.stringQRadar.DetectedUsersUsers	detected	based	on	the	username	field	in	your
search.stringQRadar.DetectedInternalIPsInternal	IP	addresses	detected	based	on	fields	and	inputs	in	your	search.stringQRadar.DetectedExternalIPsExternal	IP	addresses	detected	based	on	fields	and	inputs	in	your	search.stringQRadar.DetectedInternalHostsInternal	host	names	detected	based	on	hosts	in	your	assets	table.	Note	that	the	data
accuracy	depends	on	how	the	asset	mapping	is	configured	in	QRadar.stringQRadar.DetectedExternalHostsExternal	host	names	detected	based	on	hosts	in	your	assets	table.	Note	that	the	data	accuracy	depends	on	how	the	asset	mapping	is	configured	in	QRadar.stringPlaybook	Image#	IBM	QRadarVersion	7.3.2Ariel	Query	Language	GuideIBM	Note
Before	you	use	this	information	and	the	product	that	it	supports,	read	the	information	in	Notices	on	page	77.Product	informationThis	document	applies	to	IBM	QRadar	Security	Intelligence	Platform	V7.3.2	and	subsequent	releases	unlesssuperseded	by	an	updated	version	of	this	document.	Copyright	International	Business	Machines	Corporation	2013,
2019.US	Government	Users	Restricted	Rights	Use,	duplication	or	disclosure	restricted	by	GSA	ADP	Schedule	Contract	withIBM	Corp.	Contents	About	this	guide..	v	Chapter	1.	What's	new	for	users	in	AQL	...	1	Chapter	2.	Ariel	Query	Language
...	7	Ariel	Query	Language	deprecated	versions...7	AQL	fields	changed	in	AQL	V3..	7	Introduction	to	AQL	with	sample
queries...	9	Ariel	Query	Language	in	the	QRadar	user	interface..10	Overview	of	Ariel	Query	Language..	11	Best	practices	for	using	quotation	marks	in	AQL
queries...	13	SELECT	statement..	16	WHERE	clause..	16	GROUP	BY
clause...	18	HAVING	clause...	19	ORDER	BY	clause...	20	LIKE
clause...	20	COUNT	function..21	AQL	logical	and	comparison	operators...	22	AQL	data	calculation	and	formatting
functions...24	AQL	data	aggregation	functions..	30	AQL	data	retrieval	functions..	34	Time	criteria	in	AQL
queries..	49	AQL	date	and	time	formats..51	AQL	subquery...53	Grouping	related	events	into
sessions..	54	Transactional	query	refinements...	56	Conditional	logic	in	AQL	queries..61	Bitwise	operators	in	AQL
queries..	62	CIDR	IP	addresses	in	AQL	queries..	65	Custom	properties	in	AQL	queries...66	System	performance	query
examples..	66	Events	and	flows	query	examples...67	Reference	data	query	examples	...68	User	and	network	monitoring	query
examples...70	Event,	flow,	and	simarc	fields	for	AQL	queries..72	Notices..77
Trademarks..	78	Terms	and	conditions	for	product	documentation...	78	IBM	Online	Privacy	Statement..	79	General	Data	Protection
Regulation..79	Index..	81	iii	About	this	guide	The	Ariel	Query	Language	(AQL)	Guide	provides	you	with	information	for	using	the	AQL	advanced	searching	and	API.	Intended	audience	System	administrators	who	view
event	or	flow	data	that	is	stored	in	the	Ariel	database.	Technical	documentation	To	find	IBM	QRadar	product	documentation	on	the	web,	including	all	translated	documentation,	access	the	IBM	Knowledge	Center	(.	For	information	about	how	to	access	more	technical	documentation	in	the	QRadar	products	library,	see	Accessing	IBM	Security
Documentation	Technical	Note	(www.ibm.com/support/docview.wss?	rs=0&uid=swg21614644).	Contacting	customer	support	For	information	about	contacting	customer	support,	see	the	Support	and	Download	Technical	Note	(.	Statement	of	good	security	practices	IT	system	security	involves	protecting	systems	and	information	through	prevention,
detection	and	response	to	improper	access	from	within	and	outside	your	enterprise.	Improper	access	can	result	in	information	being	altered,	destroyed,	misappropriated	or	misused	or	can	result	in	damage	to	or	misuse	of	your	systems,	including	for	use	in	attacks	on	others.	No	IT	system	or	product	should	be	considered	completely	secure	and	no
single	product,	service	or	security	measure	can	be	completely	effective	in	preventing	improper	use	or	access.	IBM	systems,	products	and	services	are	designed	to	be	part	of	a	lawful	comprehensive	security	approach,	which	will	necessarily	involve	additional	operational	procedures,	and	may	require	other	systems,	products	or	services	to	be	most
effective.	IBM	DOES	NOT	WARRANT	THAT	ANY	SYSTEMS,	PRODUCTS	OR	SERVICES	ARE	IMMUNE	FROM,	OR	WILL	MAKE	YOUR	ENTERPRISE	IMMUNE	FROM,	THE	MALICIOUS	OR	ILLEGAL	CONDUCT	OF	ANY	PARTY.	Please	Note:	Use	of	this	Program	may	implicate	various	laws	or	regulations,	including	those	related	to	privacy,	data
protection,	employment,	and	electronic	communications	and	storage.	IBM	QRadar	may	be	used	only	for	lawful	purposes	and	in	a	lawful	manner.	Customer	agrees	to	use	this	Program	pursuant	to,	and	assumes	all	responsibility	for	complying	with,	applicable	laws,	regulations	and	policies.	Licensee	represents	that	it	will	obtain	or	has	obtained	any
consents,	permissions,	or	licenses	required	to	enable	its	lawful	use	of	IBM	QRadar.	Copyright	IBM	Corp.	2013,	2019	v	vi	IBM	QRadar	:	Ariel	Query	Language	Guide	Chapter	1.	What's	new	for	users	in	AQL	IBM	QRadar	V7.3.1	introduces	new	Ariel	Query	Language	(AQL)	functions	and	enhancements.	PARAMETERS	REMOTESERVERS	now	includes	the
option	to	select	servers	in	your	search	by	specifying	the	ID	or	name	of	Event	Processors	By	using	the	ARIELSERVERS4EPNAME	function	with	PARAMETERS	REMOTESERVERS,	you	can	specify	an	Event	Processor	by	name	in	an	AQL	query;	for	example,	PARAMETERS	REMOTESERVERS=ARIELSERVERS4EPNAME('eventprocessor0',
'eventprocessor104')	By	using	the	ARIELSERVERS4EPID	function	with	PARAMETERS	REMOTESERVERS;	you	can	specify	an	Event	Processor	by	ID	in	an	AQL	query,	for	example,	PARAMETERS	REMOTESERVERS=ARIELSERVERS4EPID(102)	By	specifying	an	Event	Processor,	or	servers	that	are	connected	to	that	Event	Processor,	you	can	run	AQL
queries	faster	and	more	efficiently.	When	you	have	multiple	servers	in	your	organization	and	you	know	where	the	data	that	you're	looking	for	is	saved,	you	can	fine-tune	the	search	to	just	the	servers,	clusters,	or	specific	servers	on	Event	Processors.	In	the	following	example,	you	search	only	the	servers	that	are	connected	to	'eventprocessor104'.
SELECT	processorid,PROCESSORNAME(processorid),	LOGSOURCENAME(logsourceid)	FROM	events	GROUP	BY	logsourceid	PARAMETERS	REMOTESERVERS=ARIELSERVERS4EPNAME	('eventprocessor104')	You	can	significantly	reduce	the	load	on	your	servers,	run	the	query	regularly,	and	get	your	results	faster	when	you	filter	your	query	to
search	fewer	servers.	Learn	more	about	PARAMETERS	REMOTESERVERS...	Learn	more	about	PARAMETERS	REMOTESERVERS...	For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.	PARAMETERS	EXCLUDESERVERS	excludes	servers	from	your	AQL	search	Avoid	having	to	search	all
AQL	servers	by	using	PARAMETERS	EXCLUDESERVERS	to	exclude	specific	servers:	IP	address;	for	example,	PARAMETERS	EXCLUDESERVERS='177.22.123.246:32006,172.11.22.31:32006'	Event	Processor	name;	for	example,	PARAMETERS	EXCLUDESERVERS=ARIELSERVERS4EPNAME	('')	Event	Processor	ID;	for	example,	PARAMETERS
EXCLUDESERVERS=ARIELSERVERS4EPID()	Searching	only	the	servers	that	have	the	data	that	you	require	speeds	up	searches	and	uses	less	server	resources.	Copyright	IBM	Corp.	2013,	2019	1	Refine	your	query	to	exclude	the	servers	that	don't	have	the	data	that	you're	searching	for.	In	the	following	example,	you	exclude	servers	that	are
connected	to	'eventprocessorABC':	SELECT	processorid,PROCESSORNAME(processorid),	LOGSOURCENAME(logsourceid)	FROM	events	GROUP	BY	logsourceid	PARAMETERS	EXCLUDESERVERS=ARIELSERVERS4EPNAME	('eventprocessorABC')	If	you	refine	multiple	queries	by	using	PARAMETERS	EXCLUDESERVERS,	you	can	reduce	the	load
on	your	servers	and	get	your	results	faster.	Learn	more	about	PARAMETERS	EXCLUDESERVERS...	Learn	more	about	PARAMETERS	EXCLUDESERVERS...	For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.	Specify	the	Event	Processor	name	in	an	AQL	query	by	using	the
ARIELSERVERS4EPNAME	function	with	PARAMETERS	REMOTESERVERS	or	PARAMETERS	EXCLUDESERVERS	In	an	AQL	query,	you	can	include	or	exclude	the	servers	that	are	connected	to	an	Event	Processor	by	using	the	ARIELSERVERS4EPNAME	function	to	name	an	Event	Processor	in	the	query.	For	example,	use	the
ARIELSERVERS4EPNAME	function	with	PARAMETERS	REMOTESERVERS	to	include	eventprocessor_ABC	in	the	query.	PARAMETERS	REMOTESERVERS=ARIELSERVERS4EPNAME('eventprocessor_ABC')	For	example,	you	might	want	the	search	to	exclude	all	servers	on	a	named	Event	Processor	by	using	the	ARIELSERVERS4EPNAME	function
with	PARAMETERS	EXCLUDESERVERS.	In	the	following	example	eventprocessor_XYZ	is	excluded	in	the	query.	PARAMETERS	EXCLUDESERVERS=ARIELSERVERS4EPNAME	('eventprocessor_XYZ')	Learn	more	about	the	ARIELSERVERS4EPNAME	function...	Learn	more	about	the	ARIELSERVERS4EPNAME	function...	For	more	information,	see	the
AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.	Specify	the	Event	Processor	ID	in	an	AQL	query	by	using	the	ARIELSERVERS4EPID	function	with	PARAMETERS	REMOTESERVERS	or	PARAMETERS	EXCLUDESERVERS	In	an	AQL	query,	you	can	include	or	exclude	servers	connected	to	an	Event	Processor	by	using
the	ARIELSERVERS4EPID	function	to	specify	the	ID	of	an	Event	Processor	in	the	query.	For	example,	include	servers	on	the	Event	Processor	that	has	the	ID	101,	PARAMETERS	REMOTESERVERS=ARIELSERVERS4EPID(101)	For	example,	exclude	servers	on	the	Event	Processor	that	has	the	ID	102,	PARAMETERS
EXCLUDESERVERS=ARIELSERVERS4EPID(102)	Learn	more	about	the	ARIELSERVERS4EPID	function...	Learn	more	about	the	ARIELSERVERS4EPID	function...	For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.2	IBM	QRadar	:	Ariel	Query	Language	Guide	Filter	your	search	by	using
the	ARIELSERVERS4EPID	function	with	the	PARAMETERSREMOTESERVERS	or	PARAMETERS	EXCLUDESERVERS	to	specify	Event	Processors	by	ID	and	theirAriel	servers.You	can	use	the	ARIELSERVERS4EPID	function	with	PARAMETERS	REMOTESERVERS	and	PARAMETERSEXCLUDESERVERS	to	specify	Ariel	servers	that	you	want	to	include
or	exclude	from	your	search.You	can	also	use	the	following	query	to	list	Ariel	servers	by	Event	Processor	ID.SELECT	processorid,	ARIELSERVERS4EPNAME(PROCESSORNAME(processorid))	from	eventsReturns	Ariel	servers	that	are	associated	with	an	Event	Processor	that	is	identified	by	ID.Here's	an	example	of	the	output	for	the	query,	which
shows	the	ID	of	the	processor	and	the	servers	forthat	processor:	22	localhost:32011,172.16.158.95:32006	Learn	more	about	the	ARIELSERVERS4EPID	function...	Learn	more	about	the	ARIELSERVERS4EPID	function...For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	LanguageGuide.In	an	AQL	query,
you	can	specify	Ariel	servers	that	are	connected	to	a	named	Event	Processor	byusing	the	ARIELSERVERS4EPNAME	function.Use	the	ARIELSERVERS4EPNAME	function	with	PARAMETERS	REMOTESERVERS	or	PARAMETERSEXCLUDESERVERS	to	specify	Ariel	servers	that	you	want	to	include	or	exclude	from	your	search.You	can	also	use	the
following	query	to	list	Ariel	servers	by	Event	Processor	name.SELECT	PROCESSORNAME(processorid),ARIELSERVERS4EPNAME(PROCESSORNAME(processorid))	from	eventsHere's	an	example	of	the	output	for	the	query,	which	shows	the	name	of	the	processor	and	the	servers:	eventprocessorABC	localhost:32011,172.16.158.95:32006	Learn	more
about	the	ARIELSERVERS4EPNAME	function...	Learn	more	about	the	ARIELSERVERS4EPNAME	function...For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	LanguageGuide.Use	the	COMPONENTID	function	to	retrieve	the	ID	for	any	named	QRadar	component	and	return	datafor	that	component.For
example,	you	can	retrieve	events	for	a	named	Event	Processor.	In	the	following	example	you	retrieveevents	from	eventprocessor0:	SELECT	*	from	events	where	processorid	=	COMPONENTID('eventprocessor0')	What's	new	for	users	in	AQL	3	PARSETIMESTAMP	function	parses	the	text	representation	of	date	and	time	and	converts	it	to	UNIX	epoch
time	Do	time-based	calculations	easily	in	AQL	when	you	convert	time	in	text	format	to	epoch	time.	Include	time-based	calculations	in	your	AQL	queries	and	use	the	time-based	criteria	that	you	specify	to	return	events	that	helps	to	enhance	the	security	of	your	organization	by	making	it	easier	to	monitor	user	activity.	For	example,	you	might	want	to
find	out	that	the	difference	between	user	logout	and	re-login	times	is	less	than	30	minutes.	If	this	timing	seems	suspicious,	you	can	investigate	further.	Learn	more	about	the	PARSETIMESTAMP	function...	Learn	more	about	the	PARSETIMESTAMP	function...	For	more	information,	see	the	AQL	data	calculation	and	formatting	functions	topic	in	the	IBM
QRadar	Ariel	Query	Language	Guide.	Retrieve	information	about	the	location	and	distance	of	IP	addresses	Use	geographical	data	that	is	provided	by	MaxMind	to	find	information	about	the	location	and	distance	between	IP	addresses	in	QRadar.	The	GEO::LOOKUP	AQL	function	returns	location	data	for	a	selected	IP	address.	The	GEO::DISTANCE	AQL
function	returns	the	distance,	in	kilometers,	of	two	IP	addresses.	Easily	recognize	the	geographical	origin	of	your	data	by	organizing	your	data	by	location	such	as	city	or	country	instead	of	by	IP	address,	and	use	the	distance	between	IP	addresses	to	evaluate	the	relative	distance	between	your	QRadar	locations.	Learn	more	about	using	the
GEO::LOOKUP	and	the	GEO::DISTANCE	functions...	Learn	more	about	using	the	GEO::LOOKUP	and	the	GEO::DISTANCE	functions...	For	more	information,	see	the	AQL	data	retrieval	functions	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.	Enhanced	support	for	the	AQL	subquery	In	QRadar	V.7.2.8	and	V.7.3.0,	the	subquery	was	accessible
only	by	using	API.	The	subquery	is	now	available	for	use	in	searches	from	the	Log	Activity	or	Network	Activity	tabs.	Learn	more	about	the	AQL	subquery...	Learn	more	about	the	AQL	subquery...	For	more	information,	see	the	AQL	subquery	topic	in	the	IBM	QRadar	Ariel	Query	Language	Guide.	Enhanced	support	for	the	SESSION	BY	clause	In	QRadar
V.7.3.0	the	SESSION	BY	clause	was	accessible	only	by	using	API.	The	SESSION	BY	clause	is	now	available	for	use	in	searches	in	QRadar.	Learn	more	about	the	AQL	SESSION	BY	clause...	Learn	more	about	the	AQL	SESSION	BY	clause...4	IBM	QRadar	:	Ariel	Query	Language	Guide	For	more	information,	see	the	Grouping	related	events	into	sessions
topic	in	the	IBM	QRadar	Ariel	QueryLanguage	Guide.	What's	new	for	users	in	AQL	5	6	IBM	QRadar	:	Ariel	Query	Language	Guide	Chapter	2.	Ariel	Query	Language	The	Ariel	Query	Language	(AQL)	is	a	structured	query	language	that	you	use	to	communicate	with	the	Ariel	databases.	Use	AQL	to	query	and	manipulate	event	and	flow	data	from	the	Ariel
database.Ariel	Query	Language	deprecated	versions	Ariel	Query	Language	(AQL)	V1	and	V2	are	deprecated.	The	command-line	script,	/opt/qradar/bin/arielClient	is	deprecated.	The	following	warning	message	is	displayed	both	before	and	after	the	results	are	returned:	WARNING:	AQL	V1	and	V2	will	be	deprecated	in	the	future.	For	information	about
using	AQL	V3,	see	the	product	documentation.	During	your	migration	to	AQL	V3,	you	can	suppress	the	warning	message	by	typing:	/opt/qradar/bin/	arielClient	|	grep	-v	WARNING	The	Python	client	and	the	Advanced	search	option	use	AQL	V3.AQL	fields	changed	in	AQL	V3	Ariel	Query	Language	(AQL)	V2	is	deprecated	in	QRadar	V7.2.4	and	later.
Some	Ariel	database	fields	were	changed	or	removed	in	AQL	V3.	If	you	have	queries	that	use	these	fields,	you	must	replace	them.	Table	1	shows	the	new	Ariel	database	fields.	Table	1.	Fields	that	were	replaced	in	AQL	V3	Field	name	(AQL	V2)	Replacement	function	name	(AQL	V3)	This	following	Ariel	database	fields	were	removed.	partialorMatchList
qidNumber	token	destinationHost	destinationIPSearch	destinationPortNA	sourceHost	sourceIPSearch	Copyright	IBM	Corp.	2013,	2019	7	sourcePortNA	destinationDscpOnly	anyDestinationFlag	smallDestinationPayload	smallDestinationPayloadHex	destinationPrecedanceOnly	lastPacketDate	localHost	remoteHost	sourceDscpOnly	anySourceFlag
sourcePayloadHex	smallSourcePayload	smallSourcePayloadHex	sourcePrecedanceOnly	sourceHostString	destinationHostString	destinationNetwork	application	sourceNetwork	smallPayload	smallPayloadHex	quickSearchMatches	bitsPerSecond	srcBitsPerSecond	dstBitsPerSecond	bytesPerSecond	bytesPerPacket	srcBytesPerPacket	dstBytesPerPacket
destinationByteRatio	destinationPacketRatio	packetsPerSecond	sourceByteRatio	sourcePacketRatio	totalBytes	totalPackets	retentionBucket	properLastPacketTime	properLastPacketDate8	IBM	QRadar	:	Ariel	Query	Language	Guide	Introduction	to	AQL	with	sample	queries	You	use	Ariel	Query	Language	(AQL)	to	get	information	about	events	and	flows
from	IBM	QRadar	that	you	can't	get	from	tables	or	graphs	on	the	QRadar	tabs.	Use	AQL	queries	in	the	Advanced	Search	box	on	the	Log	Activity	or	Network	Activity	tabs,	or	in	some	apps	in	QRadar	to	graph	dashboard	items.	Use	the	following	syntax	order	when	you	use	AQL:	SQL	Structure	[SELECT	*,	column_name,	column_name]	[FROM
table_name]	[WHERE	search	clauses]	[GROUP	BY	column_reference*]	[HAVING	clause]	[ORDER	BY	column_reference*]	[LIMIT	numeric_value]	[TIMEFRAME]	Note:	When	you	use	a	GROUP	BY	or	ORDER	BY	clause	to	sort	information,	you	can	reference	column_names	from	your	existing	SELECT	statement	only.	Note:	By	default,	if	the	TIMEFRAME
value	is	not	specified,	the	query	runs	against	the	last	five	minutes	of	Ariel	data.	Remember	to	use	single	quotation	marks	to	specify	literal	values	or	variables	and	use	double	quotation	marks	for	column	names	that	contain	spaces	or	non-ASCII	characters:	Single	quotation	marks	Use	single	quotation	marks	when	you	reference	the	beginning	and	end	of
a	string,	as	shown	in	these	examples:	username	LIKE	'%User%	sourceCIDR=	'192.0.2.0'	TEXT	SEARCH	=	'VPN	Authenticated	user	QIDNAME(qid)	AS	Event	Name	Double	quotation	marks	Use	double	quotation	marks	when	column	names	contain	spaces	or	non-ASCII	characters,	as	shown	in	these	examples:	Custom	property	names	with	spaces,	such
as	Account	Security	ID.	Values	that	have	non-ASCII	characters.	Simple	AQL	queries	Table	2.	Simple	AQL	queries	Basic	AQL	Commands	Comments	Returns	all	the	fields	from	the	events	table	that	SELECT	*	FROM	events	LAST	10	MINUTES	were	sent	in	the	last	10	minutes.	Returns	the	sourceip	and	destinationip	from	SELECT	sourceip,destinationip
FROM	events	LAST	24	HOURS	the	events	table	that	were	sent	in	the	last	24	hours.	Returns	all	the	fields	from	the	events	table	during	SELECT	*	FROM	events	START	'2017	01	01	9:00:00'	that	time	interval.	STOP	'2017	01	01	10:20:00'	Ariel	Query	Language	9	Table	2.	Simple	AQL	queries	(continued)	Basic	AQL	Commands	Comments	Returns	all	the
fields	in	the	events	table	during	the	SELECT	*	FROM	events	limit	5	LAST	24	HOURS	last	24	hours,	with	output	limited	to	five	results.	Returns	all	the	fields	in	the	events	table	sent	in	the	SELECT	*	FROM	events	ORDER	BY	magnitude	DESC	LAST	24	HOURS	last	24	hours,	sorting	the	output	from	highest	to	lowest	magnitude.	Returns	all	the	fields	in
the	events	table	that	have	a	SELECT	*	FROM	events	WHERE	magnitude	>=	3	LAST	24	HOURS	magnitude	that	is	less	than	three	from	the	last	24	hours.	Returns	all	the	fields	in	the	events	table	that	have	SELECT	*	FROM	events	WHERE	sourceip	=	'192.0.2.0'	the	specified	source	IP	and	destination	IP	within	AND	destinationip	=	'198.51.100.0'	START
the	specified	time	period.	'2017	01	01	9:00:00'	STOP	'2017	01	01	10:20:00'	Returns	all	the	fields	in	the	events	table	where	the	SELECT	*	FROM	events	WHERE	INCIDR('192.0.2.0/24',	source	IP	address	is	within	the	specified	CIDR	IP	sourceip)	range.	Returns	all	the	fields	in	the	events	table	where	the	SELECT	*	FROM	events	WHERE	username	LIKE
'%roul%'	user	name	contains	the	example	string.	The	percentage	symbols	(%)	indicate	that	the	user	name	can	match	a	string	of	zero	or	more	characters.	Returns	all	the	fields	in	the	events	table	where	the	SELECT	*	FROM	events	WHERE	username	ILIKE	'%ROUL%'	user	name	contains	the	example	string,	and	the	results	are	case-insensitive.	The
percentage	symbols	(%)	indicate	that	the	user	name	can	match	a	string	of	zero	or	more	characters.	Returns	the	sourceip,	category,	and	SELECT	sourceip,category,credibility	FROM	events	credibility	fields	from	the	events	table	with	WHERE	(severity	>	3	AND	category	=	5018)OR	specific	severity	levels,	a	specific	category,	and	a	(severity	<	3	AND
credibility	>	8)	specific	credibility	level.	The	AND	clause	allows	for	multiple	strings	of	types	of	results	that	you	want	to	have.	Returns	all	the	fields	from	the	events	table	that	SELECT	*	FROM	events	WHERE	TEXT	SEARCH	'firewall'	have	the	specified	text	in	the	output.	Returns	all	the	fields	in	the	events	table	where	the	SELECT	*	FROM	events
WHERE	username	ISNOT	NULL	username	value	is	not	null.Ariel	Query	Language	in	the	QRadar	user	interface	Using	AQL	can	help	enhance	advanced	searches	and	provide	specific	results.	When	you	use	AQL	queries,	you	can	display	data	from	all	across	QRadar	in	the	Log	Activity	or	Network	Activity	tabs.	To	use	AQL	in	the	search	fields,	consider	the
following	functions:10	IBM	QRadar	:	Ariel	Query	Language	Guide	In	the	search	fields	on	the	Log	Activity	or	Network	Activity	tabs,	type	Ctrl	+	Space	to	see	the	full	list	of	AQL	functions,	fields,	and	keywords.	Ctrl	+	Enter	helps	you	create	multiline	AQL	queries	in	the	user	interface,	which	makes	the	queries	more	readable.	By	using	the	copy	(Ctrl	+	C)
and	paste	(Ctrl	+	V)	keyboard	commands,	you	can	copy	directly	to	and	from	the	Advanced	search	field.	Note:	Ensure	that	you	use	appropriate	quotation	marks	when	you	copy	queries	to	the	search	field.	The	AQL	categories	are	listed	with	the	entered	component	in	the	user	interface.	The	following	table	lists	and	explains	the	different	categories:	Table
3.	Ariel	Query	Language	categories	Category	Definition	Database	The	name	of	an	Ariel	database,	or	table,	that	you	can	query.	The	database	is	either	events	or	flows.	Keyword	Typically	core	SQL	clauses.	For	example,	SELECT,	OR,	NULL,	NOT,	AS,	ACS	(ascending),	and	more.	Field	Indicates	basic	information	that	you	can	query	from	the	database.
Examples	include	Access	intent,	VPC	ID,	and	domainid.	Function	Various	functions	from	string	functions	to	call	in	more	information.	Functions	work	on	all	fields	and	databases.	Examples	of	functions	include	DATEFORMAT,	HOSTNAME,	and	LOWER.	Figure	1.	AQL	in	the	advanced	search	fieldOverview	of	Ariel	Query	Language	Use	AQL	to	extract,
filter,	and	perform	actions	on	event	and	flow	data	that	you	extract	from	the	Ariel	database	in	IBM	QRadar.	You	can	use	AQL	to	get	data	that	might	not	be	easily	accessible	from	the	user	interface.	The	following	diagram	shows	the	flow	of	an	AQL	query.	Ariel	Query	Language	11	SELECT	column_name,	column_name,	column_name	column_name,
column_name	FROM	events	column	name,	*	options	or	*	FROM	flows	column_name	AS	alias,	column_name	FUNCTION(property)	AS	alias,	column_name	WHERE	condition	GROUP	BY	column	data	from	results	Optional	HAVING	condition	ORDER	BY	column_name	Query	results	Figure	2.	AQL	query	flow12	IBM	QRadar	:	Ariel	Query	Language	Guide
Structure	of	an	AQL	statement	Use	the	SELECT	statement	to	select	fields	from	events	or	flows	in	the	Ariel	database,	which	are	displayed	as	columns.	For	example,	the	following	query	returns	the	results	that	are	shown	in	the	following	table:	SELECT	sourceip,	destinationip,	username,	protocolid,	eventcount	FROM	events	Table	4.	AQL	query	results
sourceip	destinationip	Username	Protocolid	eventcount	192.0.2.21	198.51.100.21	Joe	Ariel	233	1	192.0.2.22	198.51.100.24	Jim	Ariel	233	1	AQL	queries	begin	with	a	SELECT	statement	to	select	event	or	flow	data	from	the	Ariel	database.	You	can	refine	the	data	output	of	the	SELECT	statement	by	using	the	WHERE,	GROUP	BY,	HAVING,	ORDER	BY,
LIMIT,	and	LAST	clauses.	SELECT	Use	the	SELECT	statement	to	select	fields	from	events	or	flows.	For	example,	select	all	fields	from	events	or	flows	by	typing:	SELECT	*	FROM	events,	or	SELECT	*	FROM	flows	Use	the	following	clauses	to	filter	and	manipulate	the	data	that	is	returned	by	the	SELECT	statement:	WHERE	Use	the	WHERE	clause	to
insert	a	condition	that	filters	the	output,	for	example,	WHERE	logsourceid='65'.	GROUP	BY	Use	the	GROUP	BY	clause	to	group	the	results	by	one	or	more	columns	that	you	specify	in	the	query,	for	example,	GROUP	BY	logsourceid.	HAVING	Use	the	HAVING	clause	to	specify	a	condition	after	the	GROUP	BY	clause,	for	example,	HAVING	MAG	>	3.
ORDER	BY	Use	the	ORDER	BY	clause	to	order	the	results	for	a	column	in	the	AQL	query	in	an	ascending	or	descending	order,	for	example,	ORDER	BY	username	DESC.	LIMIT	Use	a	LIMIT	clause	to	limit	the	number	of	results	that	are	returned	to	a	specific	number,	for	example	LIMIT	50	to	limit	the	output	to	50	results.	LAST	Use	a	LAST	clause	to
specify	a	time	frame	for	the	query,	for	example	LAST	1	HOURS.	The	following	example	incorporates	all	of	the	clauses	that	are	described	in	the	list:	SELECT	sourceip,	destinationip,	username	FROM	events	WHERE	username	=	'test	name'	GROUP	by	sourceip,	destinationip	ORDER	BY	sourceip	DESC	LIMIT	10	LAST	2	DAYSBest	practices	for	using
quotation	marks	in	AQL	queries	In	an	AQL	query,	query	terms	and	queried	columns	sometimes	require	single	or	double	quotation	marks	so	that	QRadar	can	parse	the	query.	The	following	table	defines	when	to	use	single	or	double	quotation	marks.	Ariel	Query	Language	13	Table	5.	Type	of	quotation	marks	to	use	in	a	query	Type	of	quotation	When	to
use	marks	Single	To	specify	any	American	National	Standards	Institute	(ANSI)	VARCHAR	string	to	SQL	such	as	parameters	for	a	LIKE	or	equals	(=)	operator,	or	any	operator	that	expects	a	VARCHAR	string.	Examples:	SELECT	*	from	events	WHERE	sourceip	=	'192.0.2.0'	SELECT	*	from	events	WHERE	userName	LIKE	'%james%'	SELECT	*	from
events	WHERE	userName	=	'james'	SELECT	*	FROM	events	WHERE	INCIDR('10.45.225.14',	sourceip)	SELECT	*	from	events	WHERE	TEXT	SEARCH	'my	search	term'14	IBM	QRadar	:	Ariel	Query	Language	Guide	Table	5.	Type	of	quotation	marks	to	use	in	a	query	(continued)Type	of	quotation	When	to	usemarksDouble	Use	double	quotation	marks
for	the	following	query	items	to	specify	table	and	column	names	that	contain	spaces	or	non-ASCII	characters,	and	to	specify	custom	property	names	that	contain	spaces	or	non-ASCII	characters.	Examples:	SELECT	"username	column"	AS	'User	name'	FROM	events	SELECT	"My	custom	property	name"	AS	'My	new	alias'	FROM	events	Use	double
quotation	marks	to	define	the	name	of	a	system	object	such	as	field,	function,	database,	or	an	existing	alias.	Example:	SELECT	"Application	Category",	sourceIP,	EventCount	AS	'Count	of	Events'	FROM	events	GROUP	BY	"Count	of	Events"	Use	double	quotation	marks	to	specify	an	existing	alias	that	has	a	space	when	you	use	a	WHERE,	GROUP	BY,	or
ORDER	BY	clause	Examples:	SELECT	sourceIP,	destinationIP,	sourcePort,	EventCount	AS	'Event	Count',	category,	hasidentity,	username,	payload,	UtF8(payLoad),	QiD,	QiDnAmE(qid)	FROM	events	WHERE	(NOT	(sourcePort	Copying	query	examples	from	the	AQL	guide	If	you	copy	and	paste	a	query	example	that	contains	single	or	double	quotation
marks	from	the	AQL	Guide,	you	must	retype	the	quotation	marks	to	be	sure	that	the	query	parses.SELECT	statement	Use	the	SELECT	statement	to	define	the	criteria	that	you	use	to	retrieve	event	or	flow	data.	Use	the	SELECT	statement	to	define	the	columns	(fields)	that	you	want	to	output	from	your	query.	You	can	use	the	SELECT	statement	to
output	data	from	an	AQL	function	by	using	a	column	alias.	Typically,	you	refer	to	events	or	flows	in	your	SELECT	statement	but	you	can	also	use	the	SELECT	statement	with	the	GLOBALVIEW	database,	or	any	other	database	that	you	might	have	access	to.	Use	the	SELECT	statement	to	select	the	columns	that	you	want	to	display	in	the	query	output.	A
SELECT	statement	can	include	the	following	elements:	Fields	from	the	events	or	flows	databases	Custom	properties	from	the	events	or	flows	databases	Functions	that	you	use	with	fields	to	represent	specific	data	that	you	want	to	return.	For	example,	the	function	ASSETHOSTNAME(sourceip)	searches	for	the	host	name	of	an	asset	by	source	IP
address	at	a	specific	time.	Use	an	asterisk	(*)	to	denote	all	columns.	Field	names	and	SELECT	and	FROM	statements	are	not	case-sensitive.	For	example,	the	following	query	uses	different	cases	and	it	parses.	select	Sourceip,	DATEFORMAT(starTTime,'YYYY-MM-dd	HH:mm')	as	startTime	from	events	WHERE	username	is	noT	Null	GROUP	BY	sourceip
ordER	BY	starttime	lAsT	3	houRS	The	following	examples	are	queries	that	use	SELECT	statements:	SELECT	*	FROM	flows	Returns	all	columns	from	the	flows	database.	SELECT	sourceip,	destinationip	FROM	events	Returns	only	the	sourceip	and	destinationip	columns	from	the	events	database.	SELECT	sourceip,	*	FROM	flows	Returns	the	sourceip
column	first,	which	is	followed	by	all	columns	from	the	flows	database.	SELECT	sourceip	AS	'MY	Source	IPs',	FROM	events	Returns	the	sourceip	column	as	the	alias	or	renamed	column	'MY	Source	IPs'.	SELECT	ASSETHOSTNAME(sourceip)	AS	'Host	Name',	sourceip	FROM	events	Returns	the	output	of	the	function	ASSETHOSTNAME	as	the	column
name	Host	Name,	and	the	sourceip	column	from	the	events	database.WHERE	clause	Filter	your	AQL	queries	by	using	WHERE	clauses.	The	WHERE	clause	describes	the	filter	criteria	that	you	apply	to	the	query	and	filters	the	resulting	view	to	accept	only	those	events	or	flows	that	meet	the	specified	condition.	You	can	apply	the	WHERE	clause	to	add
a	condition	to	search	criteria	in	AQL	queries,	which	filters	the	search	results.	A	search	condition	is	a	combination	of	logical	and	comparison	operators	that	together	make	a	test.	Only	those	input	rows	that	pass	the	test	are	included	in	the	result.	You	can	apply	the	following	filters	when	you	use	WHERE	clause	in	a	query:16	IBM	QRadar	:	Ariel	Query
Language	Guide	Equal	sign	(=)	Not	equal	to	symbol	()	Less	than	symbol	()	Less	that	or	equal	to	symbol	(=)	BETWEEN	between	two	values,	for	example	(64	AND	512)	LIKE	case	sensitive	match	ILIKE	case	insensitive	match	IS	NULL	is	empty	AND	/	OR	combine	conditions	or	either	condition	TEXT	SEARCH	text	string	matchExamples	of	WHERE
clausesThe	following	query	example	shows	events	that	have	a	severity	level	of	greater	than	nine	and	are	from	aspecific	category.	SELECT	sourceIP,	category,	credibility	FROM	events	WHERE	severity	>	9	AND	category	=	5013Change	the	order	of	evaluation	by	using	parentheses.	The	search	conditions	that	are	enclosed	inparentheses	are	evaluated
first.	SELECT	sourceIP,	category,	credibility	FROM	events	WHERE	(severity	>	9	AND	category	=	5013)	OR	(severity	<	5	AND	credibility	>	8)Return	events	from	the	events	database	where	the	text	'typot'	is	found.	SELECT	QIDNAME(qid)	AS	EventName,	*	FROM	events	WHERE	TEXT	SEARCH	'typot'The	following	query	outputs	events	from	the
events	database	where	health	is	included	in	the	log	sourcename.	SELECT	logsourceid,	LOGSOURCEGROUPNAME(logsourceid),	LOGSOURCENAME(logsourceid)	FROM	events	WHERE	LOGSOURCENAME(logsourceid)	ILIKE	'%%health%%'The	following	query	outputs	events	where	the	device	type	ID	is	equal	to	11	(Linux	Server	DSM),	and	wherethe
QID	is	equal	to	44250002,	which	is	the	identifier	for	Cron	Status.	SELECT	*	FROM	events	WHERE	deviceType=	'11'	AND	qid=	'44250002'	Ariel	Query	Language	17	GROUP	BY	clause	Use	the	GROUP	BY	clause	to	aggregate	your	data	by	one	or	more	columns.	To	provide	meaningful	results	of	the	aggregation,	usually,	data	aggregation	is	combined	with
aggregate	functions	on	remaining	columns.	Examples	of	GROUP	BY	clauses	The	following	query	example	shows	IP	addresses	that	sent	more	than	1	million	bytes	within	all	flows	in	a	specific	time.	SELECT	sourceIP,	SUM(sourceBytes)	FROM	flows	where	sourceBytes	>	1000000	GROUP	BY	sourceIP	The	results	might	look	similar	to	the	following
output.	-----------------------------------	|	sourceIP	|	SUM_sourceBytes	|	-----------------------------------	|	192.0.2.0	|	4282590.0	|	|	10.105.2.10	|	4902509.0	|	|	10.103.70.243	|	2802715.0	|	|	10.103.77.143	|	3313370.0	|	|	10.105.32.29	|	2467183.0	|	|	10.105.96.148	|	8325356.0	|	|	10.103.73.206	|	1629768.0	|	-----------------------------------	However,	if	you	compare	this
information	to	a	non-aggregated	query,	the	output	displays	all	the	IP	addresses	that	are	unique,	as	shown	in	the	following	output:	------------------------------	|	sourceIP	|	sourceBytes	|	------------------------------	|	192.0.2.0	|	1448629	|	|	10.105.2.10	|	2412426	|	|	10.103.70.243	|	1793095	|	|	10.103.77.143	|	1449148	|	|	10.105.32.29	|	1097523	|	|	10.105.96.148	|
4096834	|	|	192.0.2.0	|	2833961	|	|	10.105.2.10	|	2490083	|	|	10.103.73.206	|	1629768	|	|	10.103.70.243	|	1009620	|	|	10.105.32.29	|	1369660	|	|	10.103.77.143	|	1864222	|	|	10.105.96.148	|	4228522	|	------------------------------	To	view	the	maximum	number	of	events,	use	the	following	syntax:	SELECT	MAX(eventCount)	FROM	events	To	view	the	number	of
average	events	from	a	source	IP,	use	the	following	syntax:	SELECT	AVG(eventCount),	PROTOCOLNAME(protocolid)	FROM	events	GROUP	BY	sourceIP	The	output	displays	the	following	results:	---------------------------------	|	sourceIP	|	protocol	|	---------------------------------	|	192.0.2.0	|	TCP.tcp.ip	|	|	10.105.2.10	|	UDP.udp.ip	|	|	10.103.70.243	|	UDP.udp.ip	|	|
10.103.77.143	|	UDP.udp.ip	|	|	10.105.32.29	|	TCP.tcp.ip	|	|	10.105.96.148	|	TCP.tcp.ip	|	|	192.0.2.0	|	TCP.tcp.ip	|18	IBM	QRadar	:	Ariel	Query	Language	Guide	|	10.105.2.10	|	ICMP.icmp.ip	|	---------------------------------HAVING	clause	Use	the	HAVING	clause	in	a	query	to	apply	more	filters	to	specific	data	by	applying	filters	to	the	results	after	the	GROUP	BY
clause.	The	HAVING	clause	follows	the	GROUP	BY	clause.	You	can	apply	the	following	filters	when	you	use	a	HAVING	clause	in	a	query:	Equal	sign	(=)	Not	equal	to	symbol	()	Less	than	symbol	()	Less	that	or	equal	to	symbol	(=)	BETWEEN	between	two	values,	for	example	(64	AND	512)	LIKE	case-sensitive	match	ILIKE	case	insensitive	match
SUM/AVG	total	or	average	values	MAX/MIN	maximum	or	minimum	values	Examples	of	HAVING	clauses	The	following	query	example	shows	results	for	users	who	triggered	VPN	events	from	more	than	four	IP	addresses	(HAVING	'Count	of	Source	IPs'	>	4)	in	the	last	24	hours.	SELECT	username,	UNIQUECOUNT(sourceip)	AS	'Count	of	Source	IPs'
FROM	events	WHERE	LOGSOURCENAME(logsourceid)	ILIKE	'%vpn%'	AND	username	IS	NOT	NULL	GROUP	BY	username	HAVING	"Count	of	Source	IPs"	>	4	LAST	24	HOURS	Note:	When	you	type	an	AQL	query,	use	single	quotation	marks	for	a	string	comparison,	and	use	double	quotation	marks	for	a	property	value	comparison.	The	following	query
example	shows	results	for	events	where	the	credibility	(HAVING	credibility	>	5)	is	greater	than	five.	SELECT	username,	sourceip,	credibility	FROM	events	GROUP	BY	sourceip	HAVING	credibility	>	5	LAST	1	HOURS	The	following	query	groups	results	by	source	IP	but	displays	only	results	where	the	magnitude	(HAVING	magnitude	>	5)	is	greater
than	five.	SELECT	sourceIP,	magnitude	FROM	events	GROUP	BY	sourceIP	HAVING	magnitude	>	5	Ariel	Query	Language	19	ORDER	BY	clause	Use	the	ORDER	BY	clause	to	sort	the	resulting	view	that	is	based	on	expression	results.	The	result	is	sorted	by	ascending	or	descending	order.	Note:	When	you	type	an	AQL	query,	use	single	quotation	marks
for	a	string	comparison,	and	use	double	quotation	marks	for	a	property	value	comparison.	You	can	use	the	ORDER	BY	clause	on	one	or	more	columns.	Use	the	GROUP	BY	and	ORDER	BY	clauses	in	a	single	query.	Sort	in	ascending	or	descending	order	by	appending	the	ASC	or	DESC	keyword	to	the	ORDER	BY	clause.	Examples	of	ORDER	BY	clauses
To	query	AQL	to	return	results	in	descending	order,	use	the	following	syntax:	SELECT	sourceBytes,	sourceIP	FROM	flows	WHERE	sourceBytes	>	1000000	ORDER	BY	sourceBytes	DESC	To	display	results	in	ascending	order,	use	the	following	syntax:	SELECT	sourceBytes,	sourceIP	FROM	flows	WHERE	sourceBytes	>	1000000	ORDER	BY	sourceBytes
ASC	To	determine	the	top	abnormal	events	or	the	most	bandwidth-intensive	IP	addresses,	you	can	combine	GROUP	BY	and	ORDER	BY	clauses	in	a	single	query.	For	example,	the	following	query	displays	the	most	traffic	intensive	IP	address	in	descending	order:	SELECT	sourceIP,	SUM(sourceBytes)	FROM	flows	GROUP	BY	sourceIP	ORDER	BY
SUM(sourceBytes)	DESC	Note:	When	you	use	the	GROUP	BY	clause	with	a	column	name	or	AQL	function,	only	the	first	value	is	returned	for	the	GROUP	BY	column,	by	default,	even	though	other	values	might	exist.LIKE	clause	Use	the	LIKE	clause	to	retrieve	partial	string	matches	in	the	Ariel	database.	You	can	search	fields	by	using	the	LIKE	clause.
The	following	table	shows	the	wildcard	options	are	supported	by	the	Ariel	Query	Language	(AQL).	Table	6.	Supported	wildcard	options	for	LIKE	clauses	Wildcard	character	Description	%	Matches	a	string	of	zero	or	more	characters	_	Matches	any	single	character	Examples	of	LIKE	clauses	To	match	names	such	as	Joe,	Joanne,	Joseph,	or	any	other
name	that	begins	with	Jo,	type	the	following	query:	SELECT	*	FROM	events	WHERE	userName	LIKE	'Jo%'20	IBM	QRadar	:	Ariel	Query	Language	Guide	To	match	names	that	begin	with	Jo	that	are	3	characters	long,	such	as,	Joe	or	Jon,	type	the	following	query:	SELECT	*	FROM	events	WHERE	userName	LIKE	'Jo_'	You	can	enter	the	wildcard	option	at
any	point	in	the	command,	as	shown	in	the	following	examples.	SELECT	*	FROM	flows	WHERE	sourcePayload	LIKE	'%xyz'	SELECT	*	FROM	events	WHERE	UTF8(payload)	LIKE	'%xyz%'	SELECT	*	FROM	events	WHERE	UTF8(payload)	LIKE	'_yz'	Examples	of	string	matching	keywords	The	keywords,	ILIKE	and	IMATCHES	are	case-insensitive	versions
of	LIKE	and	MATCHES.	SELECT	qidname(qid)	as	test	FROM	events	WHERE	test	LIKE	'Information%'	SELECT	qidname(qid)	as	test	FROM	events	WHERE	test	ILIKE	'inForMatiOn%'	SELECT	qidname(qid)	as	test	FROM	events	WHERE	test	MATCHES	'.*Information.*'	SELECT	qidname(qid)	as	test	FROM	events	WHERE	test	IMATCHES
'.*Information.*'COUNT	function	The	COUNT	function	returns	the	number	of	rows	that	satisfy	the	WHERE	clause	of	a	SELECT	statement.	If	the	SELECT	statement	does	not	have	a	WHERE	clause,	the	COUNT	function	returns	the	total	number	of	rows	in	the	table.	Examples	of	the	Count	function	The	following	query	returns	the	count	of	all	events	with
credibility	that	is	greater	than	or	equal	to	9.	SELECT	COUNT(*)	FROM	events	WHERE	credibility	>=	9	The	following	query	returns	the	count	of	assets	by	location	and	source	IP	address.	SELECT	ASSETPROPERTY('Location',sourceip)	AS	location,	COUNT(*)	FROM	events	GROUP	BY	location	LAST	1	days	The	following	query	returns	the	user	names,
source	IP	addresses,	and	count	of	events.	SELECT	username,	sourceip,	COUNT(*)	FROM	events	GROUP	BY	username	LAST	600	minutes	The	sourceip	column	is	returned	as	FIRST_sourceip.	One	sourceip	is	returned	only	per	username,	even	if	another	sourceip	exists.	Note:	When	you	use	the	GROUP	BY	clause	with	a	column	name	or	AQL	function,
only	the	first	value	is	returned	for	the	GROUP	BY	column,	by	default,	even	though	other	values	might	exist.	Ariel	Query	Language	21	AQL	logical	and	comparison	operators	Operators	are	used	in	AQL	statements	to	determine	any	equality	or	difference	between	values.	By	using	operators	in	the	WHERE	clause	of	an	AQL	statement,	the	results	are
filtered	by	those	results	that	match	the	conditions	in	the	WHERE	clause.	The	following	table	lists	the	supported	logical	and	comparison	operators.	Table	7.	Logical	and	comparison	operators	Operator	Description	Example	*	Multiplies	two	values	and	SELECT	*	returns	the	result.	FROM	flows	WHERE	sourceBytes	*	1024	<	1	=	The	equal	to	operator
SELECT	*	compares	two	values	and	FROM	EVENTS	returns	true	if	they	are	equal.	WHERE	sourceIP	=	destinationIP	!=	Compares	two	values	and	SELECT	*	returns	true	if	they	are	FROM	events	unequal.	WHERE	sourceIP	!=	destinationip	<	AND	Compares	two	values	and	SELECT	*	=	returns	true	if	the	value	on	FROM	flows	the	left	side	is	greater
than	WHERE	sourceBytes	>	64	AND	or	equal	to	the	value	on	the	destinationBytes	>=	64	right	side.	/	Divides	two	values	and	SELECT	*	returns	the	result.	FROM	flows	WHERE	sourceBytes	/	8	>	64	+	Adds	two	values	and	returns	SELECT	*	the	result.	FROM	flows	WHERE	sourceBytes	+	destinationBytes	<	64	-	Subtracts	one	value	from	SELECT	*
another	and	returns	the	FROM	flows	result.	WHERE	sourceBytes	-	destinationBytes	>	0	^	Takes	a	value	and	raises	it	to	SELECT	*	the	specified	power	and	FROM	flows	returns	the	result.	WHERE	sourceBytes	^	2	<	256	%	Takes	the	modulo	of	a	value	SELECT	*	and	returns	the	result.	FROM	flows	WHERE	sourceBytes	%	8	==	722	IBM	QRadar	:	Ariel
Query	Language	Guide	Table	7.	Logical	and	comparison	operators	(continued)Operator	Description	Example	AND	Takes	the	left	side	and	right	SELECT	*	side	of	a	statement	and	FROM	events	returns	true	if	both	are	true.	WHERE	(sourceIP	=	destinationIP)	AND	(sourcePort	=	destinationPort)BETWEEN	Takes	in	a	left	side	and	two	SELECT	*	(X,Y)
values	and	returns	true	if	the	FROM	events	left	side	is	between	the	two	WHERE	magnitude	BETWEEN	1	AND	5	values.COLLATE	Parameter	to	order	by	that	SELECT	*	allows	a	BCP47	language	tag	FROM	EVENTS	ORDER	BY	to	collate.	sourceIP	DESC	COLLATE	'de-CH'	IN	Specifies	multiple	values	in	a	SELECT	*	WHERE	clause.	The	IN	FROM
EVENTS	operator	is	a	shorthand	for	WHERE	SourceIP	IN	('192.0.2.1',	'::1',	'198.51.100.0')	multiple	OR	conditions.	INTO	Creates	a	named	cursor	that	SELECT	*	FROM	EVENTS	INTO	contains	results	that	can	be	'MyCursor'	WHERE....	queried	at	a	different	time.	NOT	Takes	in	a	statement	and	SELECT	*	FROM	EVENTS	returns	true	if	the	statement
WHERE	NOT	evaluates	as	false.	(sourceIP	=	destinationIP)	ILIKE	Matches	if	the	string	passed	SELECT	*	is	LIKE	the	passed	value	and	FROM	events	WHERE	userName	is	not	case	sensitive.	Use	%	ILIKE	'%bob%'	as	a	wildcard.IMATCHE	Matches	if	the	string	SELECT	*	S	matches	the	provided	FROM	events	regular	expression	and	is	not	WHERE
userName	IMATCHES	'^.bob.$'	case	sensitive.	LIMIT	Limits	the	number	of	results	SELECT	*	to	the	provided	number.	FROM	events	LIMIT	100	START	'2015-10-28	10:00'	STOP	'2015-10-28	11:00'	Note:	Place	the	LIMIT	clause	in	front	of	a	START	and	STOP	clause.	LIKE	Matches	if	the	string	passed	SELECT	*	is	LIKE	the	passed	value	but	FROM	events
WHERE	userName	is	case	sensitive.	Use	%	as	a	LIKE	'%bob%'	wildcard.MATCHES	Matches	if	the	string	SELECT	*	matches	the	provided	FROM	events	regular	expression.	WHERE	userName	MATCHES	'^.bob.$'	Ariel	Query	Language	23	Table	7.	Logical	and	comparison	operators	(continued)	Operator	Description	Example	NOT	Takes	in	a	value	and
returns	SELECT	*	NULL	true	if	the	value	is	not	null.	FROM	events	WHERE	userName	IS	NOT	NULL	OR	Takes	the	left	side	of	a	SELECT	*	statement	and	the	right	side	FROM	events	of	a	statement	and	returns	WHERE	(sourceIP	=	destinationIP)	OR	(sourcePort	=	destinationPort)	true	if	either	side	is	true.	TEXT	Full-text	search	for	the	SELECT	*
SEARCH	passed	value.	FROM	events	WHERE	TEXT	SEARCH	'firewall'	TEXT	SEARCH	is	valid	with	AND	sourceip='192.168.1.1'	AND	operators.	You	can't	use	TEXT	SEARCH	with	OR	or	other	operators;	otherwise,	SELECT	sourceip,url	you	get	a	syntax	error.	FROM	events	WHERE	TEXT	SEARCH	'download.cdn.mozilla.net'	Place	TEXT	SEARCH	in	the
AND	sourceip='192.168.1.1'	first	position	of	the	WHERE	START	'2015-01-30	16:10:12'	clause.	STOP	'2015-02-22	17:10:22'	You	can	also	do	full-text	searches	by	using	the	Quick	filter	in	the	QRadar	user	interface.	For	information	about	Quick	filter	functions,	see	the	IBM	QRadar	User	Guide.	Examples	of	logical	and	comparative	operators	To	find	events
that	are	not	parsed,	type	the	following	query:	SELECT	*	FROM	events	WHERE	payload	=	'false'	To	find	events	that	return	an	offense	and	have	a	specific	source	IP	address,	type	the	following	query:	SELECT	*	FROM	events	WHERE	sourceIP	=	'192.0.2.0'	AND	hasOffense	=	'true'	To	find	events	that	include	the	text	"firewall",	type	the	following	query:
SELECT	QIDNAME(qid)	AS	EventName,	*	FROM	events	WHERE	TEXT	SEARCH	'firewall'AQL	data	calculation	and	formatting	functions	Use	Ariel	Query	Language	(AQL)	calculation	and	formatting	functions	on	search	results	that	are	retrieved	from	the	Ariel	databases.24	IBM	QRadar	:	Ariel	Query	Language	Guide	This	list	describes	the	AQL	functions
that	are	used	for	calculations	and	data	formatting:	BASE64	on	page	25	CONCAT	on	page	25	DATEFORMAT	on	page	25	DOUBLE	on	page	26	LONG	on	page	26	LOWER	on	page	28	NOW	on	page	28	PARSEDATETIME	on	page	27	PARSETIMESTAMP	on	page	27	REPLACEALL	on	page	28	REPLACEFIRST	on	page	28	STRLEN	on	page	29	SUBSTRING	on
page	29	UPPER	on	page	29BASE64Purpose	Returns	a	Base64	encoded	string	that	represents	binary	data.Example	SELECT	BASE64(payload)	FROM	events	Returns	the	payloads	for	events	in	BASE64	format.CONCATPurpose	Concatenates	all	passed	strings	into	one	string.Example	SELECT	CONCAT(username,	':',	sourceip,	':',	destinationip)	FROM
events	LIMIT	5DATEFORMATPurpose	Formats	time	in	milliseconds	since	00:00:00	Coordinated	Universal	Time	(UTC)	on	January	1,	1970	to	a	user-readable	form.Examples	SELECT	DATEFORMAT(startTime,	'yyyy-MM-dd	hh:mm:ss')	Ariel	Query	Language	25	AS	StartTime	FROM	events	SELECT	DATEFORMAT(starttime,'yyyy-MM-dd	hh:mm')	AS
'Start	Time',	DATEFORMAT(endtime,	'yyyy-MM-dd	hh:mm')	AS	End_time,	QIDDESCRIPTION(qid)	AS	'Event	Name'	FROM	events	See	more	examples	DOUBLE	Purpose	Converts	a	value	that	represents	a	number	into	a	double.	Example	DOUBLE('1234')	LONG	Purpose	Converts	a	value	that	represents	a	number	into	a	long	integer.	Examples	SELECT
destinationip,	LONG(SUM(sourcebytes+destinationbytes))	AS	TotalBytes	FROM	flows	GROUP	BY	sourceip	The	example	returns	the	destination	IP	address,	and	the	sum	of	the	source	and	destination	bytes	in	the	TotalBytes	column.	SELECT	LONG(sourceip)	AS	long_ip	FROM	events	INTO	WHERE	(long_ip	&	0x000000)	=	0x000000	GROUP	BY	long_ip
LIMIT	20	In	QRadar7.3.1,	you	can	use	the	LONG	function	to	convert	IP	addresses	into	a	long	integer.	QRadar	uses	long	integers	with	bitwise	operators	to	do	IP	address	arithmetic	and	filtering	in	AQL	queries.	In	the	example,	the	source	IP	is	returned	as	an	integer,	which	is	used	by	the	bitwise	AND	operator.	In	the	example,	the	corresponds	with	,
which	is	in	the	first	octet	position	for	an	IP	address.	The	can	be	any	name	that	you	want	to	use.	For	example,	if	you	want	to	return	all	source	IP	addresses	with	the	number	9	in	the	first	octet,	then	substitute	the	hexadecimal	value	9,	which	is	the	same	as	the	decimal	value,	in	.	See	more	examples	of	the	long	function	that	are	used	with	bitwise
operators26	IBM	QRadar	:	Ariel	Query	Language	Guide	PARSEDATETIMEPurpose	Pass	a	time	value	to	the	parser,	for	example,	PARSEDATETIME('time	reference').	The	time	reference	indicates	the	parse	time	for	the	query.Example	SELECT	*	FROM	events	START	PARSEDATETIME('1	hour	ago')	See	more	examples	of	time
functionsPARSETIMESTAMPPurpose	Parse	the	text	representation	of	date	and	time	and	convert	it	to	UNIX	epoch	time.	For	example,	parse	the	following	text	date	format:	Thursday,	August	24,	2017	3:30:32	PM	GMT	+01:00	and	convert	it	to	the	following	epoch	timestamp:	1503588632.	This	function	makes	it	easier	to	issue	calls	from	the	API	that	are
based	on	scripts.Example	of	how	the	time	format	conversion	works	The	following	example	demonstrates	how	the	DATEFORMAT	function	converts	epoch	time	to	a	text	timestamp	by	using	the	specified	date	format,	and	then	the	PARSETIMESTAMP	function	is	used	to	convert	the	text	timestamp	to	an	epoch	time	format.	SELECT	starttime,
DATEFORMAT(starttime,'EEE,	MMM	d,	"yyyy"')	AS	"text	time	format",	PARSETIMESTAMP('EEE,	MMM	d,	"yyyy"',	"text	time	format")	AS	'epoch	time	returned'	from	events	limit	5	The	following	example	displays	an	extract	of	the	output	from	the	query:	starttime	text	time	format	epoch	time	returned	1503920389888	Mon,	M08	28,	"2017"
1503920389888Example	of	how	PARSETIMESTAMP	might	be	used	to	convert	times	to	epoch	time	so	that	timecalculations	can	be	made.	In	the	following	example,	events	are	returned	when	the	time	difference	between	logout	and	login	times	is	less	that	1	hour.	The	EEE,	d	MMM	yyyy	HH:mm:ss.SSSZ	time	format	is	just	one	example	of	a	time	format
that	you	might	use,	and	my_login	and	my_logout	are	custom	properties	in	a	known	time	format,	for	example,	EEE,	MMM	d,	"yy".	SELECT	*	from	events	WHERE	PARSETIMESTAMP('EEE,	d	MMM	yyyy	HH:mm:ss.SSSZ',	my_logout)	-	PARSETIMESTAMP('EEE,	d	MMM	yyyy	HH:mm:ss.SSSZ',	my_login)	<	3600000	last	10	days	See	more	examples	of	time
functions	Ariel	Query	Language	27	NOW	Purpose	Returns	the	current	time	that	is	expressed	as	milliseconds	since	the	time	00:00:00	Coordinated	Universal	Time	(UTC)	on	January	1,	1970.	Example	SELECT	ASSETUSER(sourceip,	NOW())	AS	'Asset	user'	FROM	events	Find	the	user	of	the	asset	at	this	moment	in	time	(NOW).	LOWER	Purpose	Returns
an	all	lowercase	representation	of	a	string.	Example	SELECT	LOWER(username),	LOWER(LOGSOURCENAME(logsourceid))	FROM	events	Returns	user	names	and	log	source	names	in	lowercase.	REPLACEALL	Purpose	Match	a	regex	and	replace	all	matches	with	text.	Replaces	every	subsequence	(arg2)	of	the	input	sequence	that	matches	the	pattern
(arg1)	with	the	replacement	string	(arg3).	Example	REPLACEALL('\d{16}',	username,	'censored')	REPLACEFIRST	Purpose	Match	a	regex	and	replace	the	first	match	with	text.	Replaces	the	first	subsequence	(arg2)	of	the	input	sequence	that	matches	the	pattern	(arg1)	with	the	replacement	string	(arg3).	Example	REPLACEFIRST('\d{16}',	username,
'censored')	STR	Purpose	Converts	any	parameter	to	a	string.28	IBM	QRadar	:	Ariel	Query	Language	Guide	Example	STR(sourceIP)STRLENPurpose	Returns	the	length	of	this	string.Example	SELECT	STRLEN(sourceIP),	STRLEN(username)	from	events	Returns	the	string	length	for	sourceip	and	username.STRPOSPurpose	Returns	the	position	(index	-
starts	at	zero)	of	a	string	in	another	string.	Searches	in	string	for	the	index	of	the	specified	substring.	You	can	optionally	specify	an	extra	parameter	to	indicate	at	what	position	(index)	to	start	looking	for	the	specified	pattern.	The	search	for	the	string	starts	at	the	specified	offset	and	moves	towards	the	end	of	string.	STRPOS(string,	substring,	index)
Returns	-1	if	the	substring	isn't	found.Examples	SELECT	STRPOS(username,	'name')	FROM	events	SELECT	STRPOS(sourceip,	'180',	2)	FROM	events)SUBSTRINGPurpose	Copies	a	range	of	characters	into	a	new	string.Examples	SELECT	SUBSTRING(userName,	0,	3)	FROM	events	SELECT	SUBSTRING(sourceip,	3,	5)	FROM	eventsUPPERPurpose
Returns	an	all	uppercase	representation	of	a	string.	Ariel	Query	Language	29	Tweet	Introduction	In	this	tutorial,	we	will	learn	how	to	leverage	the	QRadar	Ariel	Search	REST	API	endpoints	to	run	Ariel	searches	and	fetch	their	results	programmatically	using	Python.	Note:	This	tutorial	assumes	you	have	admin	access	to	a	live	QRadar	deployment.	For
the	purpose	of	this	tutorial,	I	am	using	QRadar	Community	Edition.	Please	follow	my	step-by-step	guide	-	How	to	install	IBM	QRadar	CE	V7.3.3	on	VirtualBox	to	get	a	basic	QRadar	deployment	up	and	running	in	your	lab	environment.	Note:	This	tutorial	also	assumes	you	have	some	experience	with	QRadar	REST	APIs	and	Python	scripting.	Please
follow	my	step-by-step	guide	-	QRadar	REST	APIs	with	Python	to	setup	your	Python	environment	with	pip	and	Jupyter	Notebook,	generate	a	QRadar	API	Token,	and	write	simple	Python	scripts	which	demonstrate	how	to	make	REST	API	requests	to	QRadar.	Pre-requisites	QRadar	with	admin	access	I	am	using	QRadar	CE	V7.3.3	as	described	above.
QRadar	API	Token	On	QRadar,	the	API	Token	is	also	known	as	a	SEC	Token	and	must	be	generated	by	the	admin	on	the	QRadar	Console.	Please	refer	here	for	more	information.	Python	3.x.x	I	am	using	Python	3.9.7	on	my	MacBook	Pro	with	macOS	Big	Sur.	The	code	written	in	this	tutorial	might	cause	issues	with	Python	2.	Please	refer	to	Python.org
to	download	the	latest	release	of	Python	3	for	your	OS.	pip	(Python	Package	Installer)	pip	is	a	useful	utility	to	install	Python	packages.	I	am	using	pip	21.2.4.	If	your	Python	environment	does	not	have	pip	installed	by	default,	please	refer	to	the	pip	Installation	documentation.	Install	the	following	Python	packages	using	pip:	Searching	in	QRadar
Searching	in	QRadar	is	a	basic	but	essential	functionality.	For	instance,	if	a	new	Offense	is	created,	you	will	ultimately	navigate	to	the	Log	Activity	tab	to	investigate	associated	Events	as	seen	in	the	screenshot	below.	Although	the	filters	are	automatically	applied,	it	is	fundamentally	executing	an	Ariel	search	in	the	background.	Furthermore,	SOC
Analysts	also	leverage	the	search	functionality	to	proactively	query	the	SIEM	against	Indicators	of	Compromise	(IoCs),	Hacker	Tactics,	Techniques,	and	Procedures	(TTPs),	and	other	malicious	behaviors	to	determine	the	presence	of	cyber	threats.	This	is	known	as	Threat	Hunting.	SIEM	Administrators	also	rely	upon	the	search	functionality	to	ensure
that	the	system	is	running	as	expected.	Common	use-cases	include	examining	Events	to	ensure	that	necessary	fields	are	correctly	parsed,	and	calculating	the	Events	per	Second	(EPS)	consumption	of	onboarded	Log	Sources.	QRadar	Ariel	Search	In	this	section,	we	will	start	by	dissecting	the	high-level	steps	involved	in	running	a	new	QRadar	Ariel
Search	programmatically.	Then,	we	will	move	onto	the	various	QRadar	Ariel	Search	REST	API	endpoints	and	their	specifications	including	parameters	and	responses.	Finally,	we	will	write	Python	code	to	implement	the	concepts	and	retrieve	the	result	of	a	QRadar	Saved	Search	titled	Top	Log	Sources.	Workflow	Let	us	understand	the	high-level	steps
involved	in	running	a	new	QRadar	Ariel	Search	programmatically.	They	are:	1.	Create	a	new	QRadar	Ariel	Search	using	a	Saved	Search	ID	or	AQL	Query	We	start	by	creating	a	new	REST	API	request.	You	can	either	provide	a	raw	AQL	Query	or	a	Saved	Search	ID	within	the	REST	API	request	for	QRadar	to	execute.	According	to	IBM	QRadar
documentation:	The	Ariel	Query	Language	(AQL)	is	a	structured	query	language	that	you	use	to	communicate	with	the	Ariel	databases.	Use	AQL	to	query	and	manipulate	event	and	flow	data	from	the	Ariel	database.	According	to	IBM	QRadar	documentation:	You	can	save	configured	search	criteria	so	that	you	can	reuse	the	criteria	and	use	the	Saved
Search	criteria	in	other	components,	such	as	reports.	Saved	Search	criteria	does	not	expire.	Using	the	Saved	Search	ID	is	preferred	when	you	want	to	perform	the	same	Ariel	Search	without	modifying	its	associated	AQL	Query.	For	example:	Top	Log	Sources	in	the	last	6	Hours.	There	is	no	need	for	a	SIEM	Administrator	to	modify	the	AQL	Query
associated	with	the	above	Saved	Search	if	they	intend	to	run	it	every	6	hours.	In	this	case,	using	the	Saved	Search	ID	corresponding	to	that	AQL	Query	is	the	best	approach.	Using	the	raw	AQL	Query	is	preferred	when	you	cannot	save	the	AQL	Query	as	a	Saved	Search.	This	occurs	when	the	AQL	Query	is	dynamically	created.	For	example:	Login
Failures	for	User	{XYZ}.	Assume	we	have	a	list	of	usernames	as	follows:	tomanthonyraj	Our	goal	is	to	search	QRadar	for	Login	Failure	Events	for	each	user.	The	AQL	Query	will	likely	need	to	be	modified	with	each	username	as	follows:	...	WHERE	username	ILIKE	'%tom%'...	WHERE	username	ILIKE	'%anthony%'...	WHERE	username	ILIKE	'%raj%'	It
does	not	make	sense	to	save	each	AQL	Query	as	a	separate	Saved	Search.	Instead,	it	is	easier	to	dynamically	construct	the	AQL	Query	at	runtime	with	the	username.	2.	A	Search	ID	for	the	new	QRadar	Ariel	Search	is	returned	Once	the	above	request	is	created	with	the	Saved	Search	ID	or	AQL	Query,	a	response	is	returned	with	a	unique	Search	ID.	3.
Use	Search	ID	to	check	status	of	QRadar	Ariel	Search	We	utilize	the	returned	Search	ID	to	create	a	new	REST	API	request	to	retrieve	the	status	of	the	QRadar	Ariel	Search.	The	goal	is	to	determine	if	the	QRadar	Ariel	Search	has	completed	execution.	There	are	multiple	factors	which	affect	the	performance	of	a	QRadar	Ariel	Search.	Some	searches

are	likely	to	take	longer	considering	the	complexity	and	duration	of	the	AQL	Query.	In	practice,	the	recommended	approach	is	to	continuously	poll	the	REST	API	for	the	status	of	the	QRadar	Ariel	Search	at	defined	intervals.	You	can	define	the	interval	as	30	seconds,	1	minute,	5	minutes,	10	minutes,	or	longer	based	on	previous	knowledge	and
experience.	Note:	Run	the	AQL	Query	or	Saved	Search	manually	at	least	once	on	the	QRadar	Console	to	approximately	determine	its	execution	time.	4.	Use	Search	ID	to	retrieve	result	once	QRadar	Ariel	Search	is	Completed	Once	it	is	determined	that	the	QRadar	Ariel	Search	is	successfully	completed,	we	can	create	a	new	REST	API	request	with	the
Search	ID	to	retrieve	the	result.	The	below	diagram	summarizes	the	workflow	and	its	steps:	QRadar	Ariel	Search	REST	API	Endpoints	Let	us	understand	the	various	QRadar	Ariel	Search	REST	API	endpoints	and	their	specifications,	which	will	allow	us	to	complete	all	the	steps	in	the	above	workflow.	They	are:	1.	Find	QRadar	Ariel	Saved	Searches	It
was	mentioned	above	that	we	can	create	a	new	QRadar	Ariel	Search	using	a	Saved	Search	ID	or	an	AQL	Query.	If	you	want	to	proceed	with	Saved	Search	ID,	you	will	need	to	first	query	QRadar	and	capture	the	correct	Saved	Search	ID	for	the	desired	search/AQL	Query.	The	/ariel/saved_searches	REST	API	endpoint	can	be	used	to	retrieve	a	list	of
existing	Saved	Searches	on	QRadar.	As	seen	in	the	screenshot	below,	a	GET	request	to	/ariel/saved_searches	returns	many	useful	fields	including	the	name	of	the	Saved	Search,	its	ID,	and	its	corresponding	AQL	Query.	Below	is	a	sample	JSON	snippet	displaying	the	name,	id,	and	aql	fields	for	a	Saved	Search	titled	Top	Log	Sources.	{	"name":	"Top
Log	Sources",	"id":	2721,	"aql":	"SELECT	logsourcename(logSourceId)	AS	'Log	Source',	UniqueCount(\"sourceIP\")	AS	'Source	IP	(Unique	Count)',	UniqueCount(\"destinationIP\")	AS	'Destination	IP	(Unique	Count)',	UniqueCount(\"destinationPort\")	AS	'Destination	Port	(Unique	Count)',	UniqueCount(qid)	AS	'Event	Name	(Unique	Count)',
UniqueCount(category)	AS	'Low	Level	Category	(Unique	Count)',	UniqueCount(\"protocolId\")	AS	'Protocol	(Unique	Count)',	UniqueCount(\"userName\")	AS	'Username	(Unique	Count)',	MAX(\"magnitude\")	AS	'Magnitude	(Maximum)',	SUM(\"eventCount\")	AS	'Event	Count	(Sum)',	COUNT(*)	AS	'Count'	from	events	GROUP	BY	logSourceId	order	by
\"Event	Count	(Sum)\"	desc	last	6	hours"}	It	is	to	be	noted	that	making	a	GET	request	to	/ariel/saved_searches	will	return	an	Array	of	JSON	objects.	To	make	it	easier,	we	can	consider	using	a	filter	within	the	GET	request.	As	seen	in	the	screenshot	below,	the	REST	API	endpoint	has	an	optional	Query	parameter	called	filter,	which	can	be	used	to	limit
the	response	to	a	specific	Saved	Search	or	a	subset	of	Saved	Searches.	Similarly,	the	fields	optional	Query	parameter	can	be	used	to	specify	which	fields	should	be	returned	in	the	query	response.	2.	Create	QRadar	Ariel	Search	To	create	a	new	QRadar	Ariel	Search,	make	a	POST	request	to	the	/ariel/searches	REST	API	endpoint.	As	seen	in	the
screenshot	below,	there	are	2	optional	Query	parameters	-	query_expression	and	saved_search_id,	corresponding	to	the	AQL	Query	and	Saved	Search	ID	respectively.	Depending	on	the	selected	approach,	provide	an	appropriate	value.	The	request	will	return	a	JSON	response	containing	a	unique	Search	ID.	Below	is	a	sample	JSON	snippet	displaying
the	search_id	field.	{	"search_id":	"fdd8c0be-c88b-43fe-a3fd-6f88abfb9046"}	3.	Check	Status	of	QRadar	Ariel	Search	Once	a	new	QRadar	Ariel	Search	is	created,	its	unique	Search	ID	can	be	used	to	check	the	completion	status.	To	retrieve	the	status	of	a	created	search,	make	a	GET	request	to	/ariel/searches/{search_id}	by	replacing	{search_id}	with
the	actual	Search	ID	associated	with	the	search.	As	seen	in	the	screenshot	below,	search_id	is	a	required	Path	parameter	to	be	sent	along	with	the	request.	If	we	replace	search_id	with	the	Search	ID	from	the	previous	snippet,	the	request	URL	would	look	like:	/ariel/searches/fdd8c0be-c88b-43fe-a3fd-6f88abfb9046	The	request	will	return	a	JSON
response	containing	many	fields	pertaining	to	the	status	of	the	search.	Below	is	a	sample	JSON	snippet	of	the	response	displaying	the	progress,	query_execution_time,	and	status	fields.	{	"progress":	46,	"query_execution_time":	1480,	"status":	"COMPLETED"}	4.	Get	Result	of	QRadar	Ariel	Search	Once	it	is	ascertained	that	the	QRadar	Ariel	Search	is
completed,	make	a	GET	request	to	/ariel/searches/{search_id}/results	to	retrieve	the	result	of	the	search	by	replacing	{search_id}	with	the	actual	Search	ID	associated	with	the	search.	As	seen	in	the	screenshot	below,	search_id	is	a	required	Path	parameter	to	be	sent	along	with	the	request.	It	is	also	worth	noting	that	the	result	can	be	retrieved	in
various	formats.	The	Accepts	request	header	indicates	the	format	of	the	result.	The	formats	are	RFC	compliant	and	can	be	JSON,	CSV,	XML,	or	tabular	text.	Below	is	a	sample	JSON	snippet	of	the	response	displaying	the	fields	specified	in	the	AQL	Query	associated	with	the	QRadar	Ariel	Search.	"events":	[{	"Log	Source":	"Health	Metrics-2	::
localhost",	"Source	IP	(Unique	Count)":	1.0,	"Destination	IP	(Unique	Count)":	1.0,	"Destination	Port	(Unique	Count)":	1.0,	"Event	Name	(Unique	Count)":	1.0,	"Low	Level	Category	(Unique	Count)":	1.0,	"Protocol	(Unique	Count)":	1.0,	"Username	(Unique	Count)":	0.0,	"Magnitude	(Maximum)":	4.0,	"Event	Count	(Sum)":	30040.0,	"Count":	30040.0	},	.	.	.]
It	is	to	be	noted	that	the	request	will	mostly	return	an	Array	of	JSON	objects.	In	the	snippet	above,	events	is	an	Array	containing	raw	JSON	objects,	each	pertaining	to	a	specific	Log	Source.	The	fields	returned	in	the	response	are	solely	dependent	on	the	AQL	Query	associated	with	the	QRadar	Ariel	Search.	We	can	see	that	all	the	fields	returned	in	the
JSON	response	above	are	specified	in	the	SELECT	statement	of	the	AQL	Query	below.	SELECT	logsourcename(logSourceId)	AS	'Log	Source',	UniqueCount("sourceIP")	AS	'Source	IP	(Unique	Count)',	UniqueCount("destinationIP")	AS	'Destination	IP	(Unique	Count)',	UniqueCount("destinationPort")	AS	'Destination	Port	(Unique	Count)',
UniqueCount(qid)	AS	'Event	Name	(Unique	Count)',	UniqueCount(category)	AS	'Low	Level	Category	(Unique	Count)',	UniqueCount("protocolId")	AS	'Protocol	(Unique	Count)',	UniqueCount("userName")	AS	'Username	(Unique	Count)',	MAX("magnitude")	AS	'Magnitude	(Maximum)',	SUM("eventCount")	AS	'Event	Count	(Sum)',	COUNT(*)	AS
'Count'FROM	eventsGROUP	BY	logSourceIdORDER	BY	"Event	Count	(Sum)"	DESC	LAST	6	HOURS	Python	Code	We	will	use	the	programming	concept	of	recursion	to	implement	the	QRadar	Ariel	Search	workflow	on	Python.	According	to	GeeksforGeeks:	The	process	in	which	a	function	calls	itself	directly	or	indirectly	is	called	recursion	and	the
corresponding	function	is	called	as	recursive	function.	Using	recursive	algorithm,	certain	problems	can	be	solved	quite	easily.	Examples	of	such	problems	are	Towers	of	Hanoi	(TOH),	Inorder/Preorder/Postorder	Tree	Traversals,	DFS	of	Graph,	etc.	We	will	start	by	importing	the	necessary	Python	packages	as	seen	below.	import	requestsimport
pandasimport	time	The	next	step	is	to	define	a	variable	called	SEC_TOKEN	to	hold	the	QRadar	API	Token	as	seen	below.	Please	refer	here	on	how	to	generate	a	QRadar	API	Token.	SEC_TOKEN	=	'4150d602-11ba-4d55-b3de-b6ebfe8b93ac'	The	next	step	is	to	define	a	variable	called	header	to	hold	the	Header	content	for	the	API	request	as	seen	below.
We	will	utilize	the	SEC_TOKEN	variable	that	was	defined	above	as	a	value	to	the	key	SEC.	header	=	{	'SEC':SEC_TOKEN,	'Content-Type':'application/json',	'accept':'application/json'}	After	the	variables	have	been	defined,	we	will	define	2	functions	as	follows:	1.	do_request	function	This	function	is	responsible	for	making	the	actual	REST	API	request
using	the	requests	Python	module	as	seen	below.	It	takes	the	HTTP	method,	request	URL,	and	request	parameters	as	function	arguments	and	returns	the	JSON	response.	It	is	generic	by	design	to	promote	re-usability	and	reduce	the	lines	of	code.	Note:	params	in	this	function	is	an	example	of	a	default	parameter	which	allows	us	to	specify	a	default
value	for	the	parameter	in	case	we	do	not	pass	an	argument.	By	default,	params	will	take	the	value	of	{}	which	is	an	empty	dictionary	unless	a	value	is	explicitly	passed	as	an	argument.	def	do_request(method,	url,	params={}):	r	=	requests.request(method=method,	url=url,	params=params,	headers=header,	verify=False)	return	r.json()	2.
check_status	function	This	function	is	the	recursive	function	responsible	for	checking	the	status	of	the	QRadar	Ariel	Search	at	a	defined	interval	of	3	seconds	as	seen	below.	The	function	will	return	the	JSON	response	once	the	search	is	completed.	The	base	case	in	the	function	is	when	the	variable	search_status	is	set	to	COMPLETED.	In	the	base	case,
the	do_request	function	is	called	to	retrieve	the	result	of	the	QRadar	Ariel	Search.	When	search_status	is	set	a	value	other	than	COMPLETED,	the	recursive	case	is	triggered	and	the	same	function	(check_status)	calls	itself.	First,	we	use	time.sleep(3)	to	suspend	the	execution	for	3	seconds.	Then,	the	do_request	function	is	called	to	fetch	the	status	of
the	QRadar	Ariel	Search.	The	status	of	the	search,	accessed	via	resp_json['status'],	is	used	as	an	argument	in	the	recursive	function	call.	The	recursive	function	calls	are	repeated	until	the	base	case	is	satisified	i.e.,	when	search_status="COMPLETED",	which	then	stops	the	recursion	and	retrieves	the	result	of	the	search.	Our	goal	is	to	ensure	that	the
base	case	is	triggered	successfully,	else	the	function	will	call	itself	over	and	over	endlessly	resulting	in	infinite	recursion.	def	check_status(search_status,	search_id):	if	search_status=="COMPLETED":	print("Search	Completed")	method	=	"GET"	url	=	'	s/results'	%	search_id	return	do_request(method,	url)	else:	print("Waiting	for	3	seconds...")
time.sleep(3)	method	=	"GET"	url	=	'	s'	%	search_id	resp_json	=	do_request(method,	url)	return	check_status(resp_json['status'],	search_id)	According	to	IBM	QRadar	documentation:	The	search	status	value	be	one	of:	WAIT,	EXECUTE,	SORTING,	COMPLETED,	CANCELED,	or	ERROR.	It	is	to	be	noted	that	we	are	only	considering	COMPLETED	as	the
base	case	in	our	code	for	the	sake	of	simplicity.	A	more	concrete	implementation	of	this	function	will	likely	have	more	base	cases	in	the	recursive	function	to	consider	CANCELED	and	ERROR	search	statuses.	According	to	MIT:	A	recursive	implementation	may	have	more	than	one	base	case,	or	more	than	one	recursive	step.	For	example,	the	Fibonacci
function	has	two	base	cases,	n=0	and	n=1.	The	next	step	is	to	utilize	the	above	2	defined	functions	to	perform	a	new	QRadar	Ariel	Search	and	display	its	result.	Let	us	attempt	to	perform	the	Saved	Search	titled	Top	Log	Sources.	To	capture	the	correct	Saved	Search	ID	associated	with	the	Top	Log	Sources	Saved	Search,	we	will	define	the	request	URL
and	request	parameters	as	seen	below.	url	=	'	params	=	{'filter':'name="Top	Log	Sources"'}type(params)#	dict	params	is	a	dictionary	with	a	single	key	called	filter.	The	associated	value	is	name="Top	Log	Sources".	It	is	important	to	note	the	double	quotes	encapsulating	the	Saved	Search	name.	The	next	step	is	to	make	a	GET	request	using	our
previously	defined	function	do_request	as	seen	below.	The	result	is	stored	in	a	variable	called	res_json.	method	=	"GET"res_json	=	do_request(method,	url,	params)res_json'''[{'owner':	'admin',	'is_dashboard':	True,	'description':	'',	'creation_date':	1245191315681,	'uid':	'SYSTEM-13',	'database':	'EVENTS',	'is_default':	False,	'is_quick_search':	True,
'name':	'Top	Log	Sources',	'modified_date':	1622547778276,	'id':	2721,	'is_aggregate':	True,	'aql':	'SELECT	logsourcename(logSourceId)	AS	\'Log	Source\',	UniqueCount("sourceIP")	AS	\'Source	IP	(Unique	Count)\',	UniqueCount("destinationIP")	AS	\'Destination	IP	(Unique	Count)\',	UniqueCount("destinationPort")	AS	\'Destination	Port	(Unique
Count)\',	UniqueCount(qid)	AS	\'Event	Name	(Unique	Count)\',	UniqueCount(category)	AS	\'Low	Level	Category	(Unique	Count)\',	UniqueCount("protocolId")	AS	\'Protocol	(Unique	Count)\',	UniqueCount("userName")	AS	\'Username	(Unique	Count)\',	MAX("magnitude")	AS	\'Magnitude	(Maximum)\',	SUM("eventCount")	AS	\'Event	Count	(Sum)\',
COUNT(*)	AS	\'Count\'	from	events	GROUP	BY	logSourceId	order	by	"Event	Count	(Sum)"	desc	last	6	hours',	'is_shared':	True}]'''type(res_json)#	listlen(res_json)#	1	It	is	to	be	noted	that	res_json	is	of	type	list	with	a	length	of	1.	We	must	remember	this	while	attempting	to	parse	the	values.	Our	goal	is	to	capture	the	Saved	Search	ID	using	its	key	-	id.
We	will	define	a	variable	called	SAVED_SEARCH_ID	to	hold	the	Saved	Search	ID	as	seen	below.	SAVED_SEARCH_ID	=	res_json[0]['id']SAVED_SEARCH_ID#	2721	Now	that	we	have	the	Saved	Search	ID	(2721),	we	can	create	the	QRadar	Ariel	Search	by	defining	the	request	URL	and	request	parameters	as	seen	below.	method	=	"POST"url	=	'	params
=	{'saved_search_id':SAVED_SEARCH_ID}params#	{'saved_search_id':	2721}	The	next	step	is	to	make	a	POST	request	using	our	previously	defined	function	do_request	as	seen	below.	The	result	is	stored	in	a	variable	called	res_json.	res_json	=	do_request(method,	url,	params)res_json'''{'cursor_id':	'789355dd-2bb9-454a-9d05-26ba4d373d48',
'status':	'WAIT',	'compressed_data_file_count':	0,	'compressed_data_total_size':	0,	'data_file_count':	0,	'data_total_size':	0,	'index_file_count':	0,	'index_total_size':	0,	'processed_record_count':	0,	'desired_retention_time_msec':	86400000,	'progress':	0,	'progress_details':	[],	'query_execution_time':	0,	'query_string':	'SELECT	logsourcename(logSourceId)
AS	\'Log	Source\',	UniqueCount("sourceIP")	AS	\'Source	IP	(Unique	Count)\',	UniqueCount("destinationIP")	AS	\'Destination	IP	(Unique	Count)\',	UniqueCount("destinationPort")	AS	\'Destination	Port	(Unique	Count)\',	UniqueCount(qid)	AS	\'Event	Name	(Unique	Count)\',	UniqueCount(category)	AS	\'Low	Level	Category	(Unique	Count)\',
UniqueCount("protocolId")	AS	\'Protocol	(Unique	Count)\',	UniqueCount("userName")	AS	\'Username	(Unique	Count)\',	MAX("magnitude")	AS	\'Magnitude	(Maximum)\',	SUM("eventCount")	AS	\'Event	Count	(Sum)\',	COUNT(*)	AS	\'Count\'	from	events	GROUP	BY	logSourceId	order	by	"Event	Count	(Sum)"	desc	last	6	hours',	'record_count':	0,
'size_on_disk':	0,	'save_results':	False,	'completed':	False,	'subsearch_ids':	[],	'snapshot':	None,	'search_id':	'789355dd-2bb9-454a-9d05-26ba4d373d48'}'''	Our	goal	is	to	capture	the	Search	ID	using	its	key	-	search_id.	We	will	define	a	variable	called	SEARCH_ID	to	hold	the	Search	ID	as	seen	below.	SEARCH_ID	=	res_json['search_id']SEARCH_ID#
'789355dd-2bb9-454a-9d05-26ba4d373d48'	The	next	step	is	to	invoke	the	check_status	recursive	function	with	the	Search	ID	as	seen	below.	The	return	value	will	be	stored	into	a	variable	called	resp.	resp	=	check_status("WAIT",	SEARCH_ID)'''Waiting	for	3	seconds...Search	Completed'''resp'''{'events':	[{'Log	Source':	'Health	Metrics-2	::	localhost',
'Source	IP	(Unique	Count)':	1.0,	'Destination	IP	(Unique	Count)':	1.0,	'Destination	Port	(Unique	Count)':	1.0,	'Event	Name	(Unique	Count)':	1.0,	'Low	Level	Category	(Unique	Count)':	1.0,	'Protocol	(Unique	Count)':	1.0,	'Username	(Unique	Count)':	0.0,	'Magnitude	(Maximum)':	5.0,	'Event	Count	(Sum)':	113760.0,	'Count':	113760.0},	{'Log	Source':
'System	Notification-2	::	qradar',	'Source	IP	(Unique	Count)':	2.0,	'Destination	IP	(Unique	Count)':	1.0,	'Destination	Port	(Unique	Count)':	1.0,	'Event	Name	(Unique	Count)':	4.0,	'Low	Level	Category	(Unique	Count)':	3.0,	'Protocol	(Unique	Count)':	1.0,	'Username	(Unique	Count)':	0.0,	'Magnitude	(Maximum)':	7.0,	'Event	Count	(Sum)':	23292.0,	'Count':
23292.0},	{'Log	Source':	'SIM	Audit-2	::	qradar',	'Source	IP	(Unique	Count)':	3.0,	'Destination	IP	(Unique	Count)':	1.0,	'Destination	Port	(Unique	Count)':	1.0,	'Event	Name	(Unique	Count)':	8.0,	'Low	Level	Category	(Unique	Count)':	2.0,	'Protocol	(Unique	Count)':	1.0,	'Username	(Unique	Count)':	5.0,	'Magnitude	(Maximum)':	8.0,	'Event	Count	(Sum)':
168.0,	'Count':	168.0},	{'Log	Source':	'Anomaly	Detection	Engine-2	::	qradar',	'Source	IP	(Unique	Count)':	1.0,	'Destination	IP	(Unique	Count)':	1.0,	'Destination	Port	(Unique	Count)':	1.0,	'Event	Name	(Unique	Count)':	1.0,	'Low	Level	Category	(Unique	Count)':	1.0,	'Protocol	(Unique	Count)':	1.0,	'Username	(Unique	Count)':	0.0,	'Magnitude
(Maximum)':	3.0,	'Event	Count	(Sum)':	16.0,	'Count':	16.0}]}'''type(resp)#	dict	The	print	statements	defined	in	the	check_status	function	help	us	understand	if	the	search	is	still	running	or	if	it	has	completed.	Note:	You	can	customize	the	verbosity	of	the	messages	in	the	check_status	function.	While	simple	print	statements	are	helpful,	there	are	other
logging	mechanisms	available	at	your	disposal.	We	can	see	that	resp	contains	the	response	-	the	result	of	our	Top	Log	Sources	QRadar	Ariel	Search	in	JSON	format.	However,	the	actual	data	we	are	interested	in	is	stored	under	the	key	events.	type(resp['events'])#	listlen(resp['events'])#	4	At	this	point,	it	is	useful	to	store	the	raw	JSON	data	into	a
different	data	structure	-	namely,	a	Pandas	DataFrame.	The	best	way	to	convert	our	Array	of	JSON	objects;	i.e.,	resp['events']	which	is	of	type	list	into	a	DataFrame	is	by	using	the	pandas.json_normalize	function	as	seen	below.	df	=	pandas.json_normalize(resp['events'])type(df)#	pandas.core.frame.DataFramedf	As	per	the	above	snippet,	the	variable
df	now	holds	our	result	DataFrame.	The	dimensions	of	the	DataFrame	can	be	retrieved	using	pandas.DataFrame.shape	which	returns	a	tuple	of	dimensions	as	seen	below.	df.shape#	(4,	11)	Now	that	we	have	our	result	DataFrame,	we	can	aggregate,	visualize,	and	export	the	data	as	desired.	The	below	screenshot	shows	the	final	Jupyter	Notebook.
Conclusion	In	this	tutorial,	we	learnt	how	to	leverage	the	QRadar	Ariel	Search	REST	API	endpoints	to	run	Ariel	searches	and	fetch	their	results	programmatically	using	Python.	To	summarize:	We	started	by	understanding	the	relevance	of	searching	in	QRadar	and	how	it	is	a	basic	but	essential	functionality.	Then,	we	dissected	the	high-level	steps
involved	in	running	a	new	QRadar	Ariel	Search	programmatically.	Here,	we	discussed	when	to	use	a	raw	AQL	Query	and	when	to	use	a	Saved	Search	ID.	A	diagram	was	provided	to	visualize	the	steps	in	the	workflow.	Next,	we	delved	into	the	various	QRadar	Ariel	Search	REST	API	endpoints	available	on	QRadar	to	complete	all	the	steps	in	the
workflow.	Here,	we	discussed	about	each	endpoint	including	its	response	fields,	parameters,	and	sample	JSON	response.	Then,	we	wrote	Python	code	using	the	concept	of	recursion	to	implement	the	steps	in	the	workflow.	We	took	an	example	Saved	Search	(Top	Log	Sources)	and	explained	how	we	can	capture	its	corresponding	Saved	Search	ID,
create	a	new	QRadar	Ariel	Search,	check	its	completion	status,	and	retrieve	the	result	in	JSON	format.	We	also	converted	the	JSON	response	into	a	Pandas	DataFrame	to	make	querying	and	aggregation	easier.	Using	the	concepts	discussed	in	this	tutorial,	you	can	easily	write	Python	code	to	automate	QRadar	searching	tasks	(such	as	Threat	Hunting
and	SOC	Reporting)	which	previously	required	manual	effort.	You	can	view	and	download	the	Jupyter	Notebook	from	this	tutorial	using	the	link	below.	Jupyter	Notebook:	QRadar	Ariel	Search	API	I	hope	you	enjoyed	reading	this	tutorial.	Please	reach	out	via	email	if	you	have	any	questions	or	comments.	

Qradar	advanced	search	syntax.	Qradar	advanced	search.	Qradar	advanced	search	queries.	Qradar	advanced	search	reference	set.

