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Granger	causality	has	become	a	popular	tool	for	analyzing	time	series	data	in	many	application	domains,	from	economics	and	finance	to	genomics	and	neuroscience.	Despite	this	popularity,	the	validity	of	this	framework	for	inferring	causal	relationships	among	time	series	has	remained	the	topic	of	continuous	debate.	Moreover,	while	the	original
definition	was	general,	limitations	in	computational	tools	have	constrained	the	applications	of	Granger	causality	to	primarily	simple	bivariate	vector	autoregressive	processes.	Starting	with	a	review	of	early	developments	and	debates,	this	article	discusses	recent	advances	that	address	various	shortcomings	of	the	earlier	approaches,	from	models	for
high-dimensional	time	series	to	more	recent	developments	that	account	for	nonlinear	and	non-Gaussian	observations	and	allow	for	subsampled	and	mixed-frequency	time	series.	Keywords:	multivariate	time	series,	vector	autoregressive	model,	graphical	models,	penalized	estimation,	deep	neural	networks,	mixed-frequency	time	series	There	is	a	range
of	applications	where	the	interest	is	in	understanding	interactions	between	a	set	of	time	series,	including	in	neuroscience,	genomics,	econometrics,	climate	science,	and	social	media	analysis.	For	example,	in	neuroscience,	one	may	seek	to	understand	whether	activity	in	one	brain	region	correlates	with	later	activity	in	another	region,	or	to	decipher
instantaneous	correlations	between	regions—both	notions	of	functional	connectivity.	In	genomics,	there	is	an	analogous	study	of	gene	regulatory	networks.	In	econometrics,	one	may	be	interested	in	how	various	macroeconomic	indicators	predict	one	another.	We	also	have	unprecedented	levels	of	data	on	people’s	actions—including	social	media	posts,
purchase	histories,	and	political	voting	records—and	want	to	understand	the	dependencies	between	the	actions	of	these	individuals.	Modern	recording	modalities	and	the	ability	to	store	and	process	large	amounts	of	data	have	escalated	the	scale	at	which	we	seek	to	do	such	analyses.	In	many	cases,	one	may	seek	notions	of	causal	interactions	among
the	time	series	but	be	limited	to	drawing	inferences	from	observational	data	without	opportunities	for	experimentation	and	without	known	mechanistic	models	for	the	observed	phenomena.	In	such	cases,	Granger	(1969)	put	forth	a	framework	leveraging	the	temporal	ordering	inherent	to	time	series	in	hopes	of	drawing	causal	statements	restricted	to
the	past	causing	the	future.	The	framework,	in	reality,	assesses	whether	one	series	is	predictive	of	another:	A	series	xi	is	deemed	not	to	be	“causal”	of	another	series	xj	if	leveraging	the	history	of	series	xi	does	not	reduce	the	variance	of	the	prediction	of	series	xj.	In	this	review,	we	distinguish	this	definition	from	other	standard	definitions	of	causality
by	referring	to	it	as	Granger	causality.	Although	there	is	a	long	history	of	debate	about	the	validity	of	the	Granger	causality	framework	for	causal	analyses—and	justly	so—in	this	review	we	take	the	stance	that	analyzing	interactions	in	time	series	defined	by	association	has	its	utility.	Granger	causality	has	traditionally	relied	on	assuming	a	linear	vector
autoregressive	(VAR)	model	(Lütkepohl	2005)	and	considering	tests	on	the	VAR	coefficients	in	the	bivariate	setting.	However,	in	real-world	systems	involving	many	time	series,	considering	the	relationship	between	just	a	pair	of	series	can	lead	to	confounded	inferences	(e.g.,	Lütkepohl	1982).	Network	Granger	causality	aims	to	adjust	for	possible
confounders	or	jointly	consider	multiple	series	(Eichler	2007,	Basu	et	al.	2015).	There	are	other	important	limitations	of	the	linear	VAR	model	underlying	standard	Granger	causal	analysis	that	have	precluded	its	broad	utility.	Some	limiting	assumptions	include	assuming	(a)	real-valued	time	series	with	(b)	linear	dynamics	dependent	on	(c)	a	known
number	of	past	lagged	observations,	with	(d)	observations	available	at	a	fixed,	discrete	sampling	rate	that	matches	the	time	scale	of	the	causal	structure	of	interest.	In	contrast,	modern	time	series	are	often	messy	in	ways	that	break	a	number	of	these	assumptions,	including	through	nonlinear	dynamics	and	irregular	sampling.	Recent	advances	have
pushed	the	envelope	on	where	Granger	causality	can	be	applied	by	loosening	these	restrictions	in	a	variety	of	ways.	We	review	some	of	these	advances	and	set	the	stage	for	further	developments.	In	Section	2	we	review	the	history	of	Granger	causality,	starting	with	the	original	definition	and	assumptions	in	Section	2.1	and	early	approaches	for	testing
in	Section	2.2.	We	then	turn	to	network	Granger	causality	and	the	issues	of	lag	selection	and	nonstationary	VAR	models	in	Section	3.	Finally,	in	Section	4	we	review	recent	advances	that	move	beyond	the	standard	linear	VAR	model	and	consider	discrete-valued	series	(Section	4.1),	nonlinear	dynamics	and	interactions	(Section	4.2),	and	series	observed
at	different	sampling	rates	(Section	4.3).	In	his	seminal	paper,	Granger	(1969)	proposed	a	notion	of	causality	based	on	how	well	past	values	of	a	time	series	yt	could	predict	future	values	of	another	series	xt.	Let	ℋ


