
	

https://vodogelovun.vimemug.com/849595998765359844326509104420895500288366?tagodufutedozinivijixasatutufofajizufogarevapufejizaloraratejuxawirikovunipuvomebijavigadalami=taloresopalepejovomujiboxiwopenomirifezevefibikepagosalorozokimepujofuwiluwikanobagamiwunawepugekakurixowirewagifezolapegorasidabexujuginesidasejuvikubujipifikexuviliwaxubigefavikufabamirenijaketuxazorofurefav&utm_kwd=react+js+download&wozezozowagoxusudokopugulotopiwifosuxivuvujokejikupavalaxigenonojimopuxakufel=rapevelewumexawedazafonotifapipitufepelepapojovujijigamejezogizanajavezukegomabijategirasulujugaregixenuxopegapelunanoxa




I	discovered	a	workaround	for	downloading	data	as	an	xlsx	file	by	utilizing	stackoverflow's	solution	and	modifying	it	slightly.	Below	is	my	modified	code	that	may	aid	you	in	achieving	similar	results.	```javascript	const	blob	=	await	res.blob();	const	href	=	await	URL.createObjectURL(blob);	//	Create	a	new	link	element	to	initiate	the	download	const	link
=	document.createElement('a');	link.href	=	href;	link.download	=	"file.xlsx";	//	Simulate	a	click	on	the	link	to	initiate	the	download	link.click();	//	Release	the	object	to	prevent	memory	leak	document.body.removeChild(link);	```	Alternatively,	you	can	use	the	following	function	to	create	a	more	robust	download	mechanism:	```javascript	const
downloadFile	=	()	=>	{	const	{	myData	}	=	this.state;	//	Create	a	file	in	browser	const	fileName	=	"my-file";	const	json	=	JSON.stringify(myData,	null,	2);	const	blob	=	new	Blob([json],	{	type:	"application/json"	});	const	href	=	URL.createObjectURL(blob);	//	Create	an	anchor	tag	with	the	href	attribute	to	initiate	download	const	link	=
document.createElement("a");	link.href	=	href;	link.download	=	fileName	+	".json";	//	Release	the	object	to	prevent	memory	leak	document.body.removeChild(link);	URL.revokeObjectURL(href);	}	```	It's	crucial	to	note	that	releasing	the	object	with	`URL.revokeObjectURL()`	prevents	memory	leaks	and	ensures	optimal	performance.	You	can	use	this
function	in	your	React	component	to	download	a	pdf	file	using	an	anchor	tag.	The	process	of	downloading	data	depends	on	whether	the	source	is	public	or	private	and	the	level	of	control	over	the	server.	When	a	server	responds	with	specific	headers,	such	as	Content-Disposition:	attachment;	filename=dummy.pdf	and	Content-Type:	application/pdf,	the
browser	attempts	to	download	the	file	named	'dummy.pdf'.	Alternatively,	if	the	server	responds	with	Content-Disposition:	inline;	filename=dummy.pdf	and	Content-Type:	application/pdf,	the	browser	first	tries	to	open	a	native	file	reader	for	'dummy.pdf',	otherwise	it	initiates	a	file	download.	In	cases	where	these	headers	are	not	provided,	the	browser's
behavior	can	vary,	such	as	attempting	to	open	the	file	if	the	download	attribute	is	not	specified.	For	large	data	transfers,	using	Transfer-Encoding:	chunked	ensures	the	client	knows	when	to	stop	reading	from	the	current	request	in	the	absence	of	a	Content-Length	header.	For	private	files,	importing	necessary	modules	like	useState	and	useEffect	from
"react"	and	axios	from	"axios"	allows	for	the	creation	of	a	function	that	handles	the	download.	This	involves	setting	up	state	for	the	download,	using	useEffect	to	trigger	an	async	download	function	when	the	state	changes,	and	within	this	function,	sending	a	GET	request	with	responseType	set	to	"blob"	and	appropriate	headers	like	Authorization
tokens.	The	response	is	then	used	to	create	a	blob	URL,	which	is	assigned	to	a	newly	created	link	element	along	with	a	download	attribute	specifying	the	filename,	before	simulating	a	click	on	this	link	to	initiate	the	download.	For	public	files,	a	similar	approach	can	be	taken	but	with	less	complexity	since	authorization	headers	are	not	required.	The
download	process	involves	creating	a	link	element	and	setting	its	href	attribute	to	the	URL	of	the	file	to	be	downloaded,	adding	a	download	attribute	to	specify	the	filename,	and	then	simulating	a	click	on	this	link.	It's	essential	to	control	file	downloads	from	the	server	side	and	be	aware	that	Axios	uses	XHR	under	the	hood,	which	does	not	support
response	streaming.	Implementing	a	progress	bar	can	be	achieved	by	using	the	onDownloadProgress	method	provided	by	Axios.	Additionally,	when	dealing	with	chunked	responses	from	the	server,	which	cannot	indicate	Content-Length,	finding	an	alternative	way	to	determine	the	response	size	is	necessary.	The	code	attempts	to	download	a	file	from
the	server	using	React	and	Node.	The	`handleClick`	function	sends	a	GET	request	to	the	server,	and	if	successful,	it	should	trigger	the	`handleFile`	function,	which	creates	a	blob	and	sets	the	state	with	the	URL	of	the	blob.	However,	instead	of	downloading	the	correct	file,	the	browser	shows	`[object	Response]`.	This	issue	arises	because	the
`response`	object	is	not	being	converted	to	a	downloadable	format	before	setting	the	`href`	attribute	of	the	``	tag.	The	problem	lies	in	this	line:	```javascript	this.setState	({fileDownloadUrl:	response.url},//fileDownloadUrl},	```	Here,	we're	trying	to	set	the	state	with	`response.url`,	but	it's	already	a	URL.	What	we	want	is	to	download	the	content	of
the	file	at	that	URL.	Since	`response.body`	is	a	ReadableStream,	we	need	to	convert	it	to	a	blob	first.	We	can	fix	this	by	changing	the	line	to:	```javascript	const	fileDownloadUrl	=	URL.createObjectURL(response.body);	this.setState	({fileDownloadUrl:	fileDownloadUrl});	```	This	will	create	a	blob	from	the	response	body	and	set	the	`href`	attribute	of
the	``	tag	with	the	correct	URL.

React	js	download	excel	file.	React	js	download	pdf.	React	js	download	file.	React	js	download	csv	file.	React	js	download	windows.	React	js	download	file	from	api.	React	js	download	zip	file	from	api.	React	js	download	command.	React	js	download	for	ubuntu.	React	js	download	file	from	server.	React	js	download	image	from	url.	React	js	download	for
mac.	React	js	download	for	windows	10.	React	js	download	button.	React	js	download	vs	code.


