
	

https://tupatu.vimemug.com/758661039560454553927715851830747035711149?najedinijofevunerepuvezolufexafurevupiteziriwijom=nunilawesunewewulolerawedujewoxazukesasivewovemagojorojejanozetinixovajolifojiwewotivemepuzotobetemosefakofijapofosudezadiperewupawotetiregopekonewedotezisapixefubutadunekidudupeduzugomeduwedejefutivimusofewul&utm_kwd=math+operator+precedence&dabimagoxivufemepomuwibazufetejogojupobateruleworeruzenusadijuzelototufin=ripederinewewaperiwezowukibupetajanijefupagixebokerinutezilapexumepuxafaxarewomogevalawafozexokalixakol




















Math	operator	precedence

The	licensor	grants	you	permission	to	share,	copy,	and	redistribute	the	material	in	any	medium	or	format	for	commercial	purposes	as	well.	You	can	also	adapt,	remix,	transform,	and	build	upon	the	material	without	worrying	about	losing	these	freedoms.	As	long	as	you	follow	the	license	terms,	the	licensor	cannot	revoke	them.	When	using	this	material,
it's	essential	to	give	proper	attribution	by	providing	a	link	to	the	license	and	indicating	if	any	changes	were	made.	This	can	be	done	in	any	reasonable	manner	that	doesn't	suggest	the	licensor	endorses	your	use.	If	you're	remixing	or	transforming	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	The	license
does	not	impose	any	additional	restrictions	on	how	you	use	the	material.	You	are	free	to	do	whatever	the	license	permits	without	having	to	comply	with	other	legal	terms	or	technological	measures	that	could	restrict	others	from	using	it.	However,	this	license	may	not	provide	all	the	necessary	permissions	for	your	intended	use,	and	other	rights	such	as
publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Regarding	the	C++	operators:	-	`static_cast`	converts	one	type	to	another	compatible	type.	-	`dynamic_cast`	converts	a	virtual	base	class	to	a	derived	class.	-	`const_cast`	converts	a	type	to	a	compatible	type	with	different	cv	qualifiers.	-	`reinterpret_cast`	converts	a	type	to	an
incompatible	type.	-	`new`	allocates	memory.	-	`delete`	deallocates	memory.	-	`sizeof`	queries	the	size	of	a	type.	-	`sizeof...`	(from	C++11)	queries	the	sizes	of	packed	parameters.	-	`typeid`	queries	the	type	information	of	a	type.	-	`noexcept`	checks	if	an	expression	can	throw	an	exception	(from	C++.	Operator	Precedence,	also	known	as	operator
hierarchy,	is	a	set	of	rules	that	determines	the	order	in	which	operations	are	performed	within	an	expression	without	parentheses.	This	concept	is	fundamental	to	programming	languages	and	crucial	for	writing	correct	and	efficient	code.	Operator	Precedence	defines	the	order	in	which	operations	are	performed	based	on	the	operators	between
operands.	For	instance,	consider	the	mathematical	expression	2	+	3	*	4.	If	we	perform	operations	from	left	to	right,	we	get	(2	+	3)	*	4	=	20.	However,	following	the	standard	mathematical	rule	of	precedence	(BODMAS),	which	states	that	multiplication	and	division	should	be	performed	before	addition	and	subtraction,	we	get	2	+	(3	*	4)	=	14.	In
programming,	Operator	Precedence	applies	similarly.	Arithmetic	operators	follow	standard	precedence	rules	used	in	mathematics.	The	order	of	precedence	for	arithmetic	operators	from	highest	to	lowest	is:	1.	Parentheses	2.	Unary	plus	and	minus	3.	Multiplication,	division,	and	modulus	4.	Addition	and	subtraction	Below	are	examples	demonstrating
Operator	Precedence	in	C++	and	Java:	```csharp	//	C++	int	result1	=	a	+	b	*	c;	//	Result	20	int	result2	=	(a	+	b)	*	c;	//	Result	30	int	result3	=	a	-	b	/	c;	//	Result	8	int	result4	=	(a	-	b)	/	c;	//	Result	2	//	Java	public	class	Main	{	public	static	void	main(String[]	args)	{	int	result1	=	a	+	b	*	c;	//	Result	20	int	result2	=	(a	+	b)	*	c;	//	Result	30	int	result3	=	a	-	b
/	c;	//	Result	8	int	result4	=	(a	-	b)	/	c;	//	Result	2	}	}	```	The	code	demonstrates	the	difference	in	operator	precedence	and	parentheses	usage	between	three	programming	languages:	Python,	C++,	and	JavaScript.	In	Python,	division	has	higher	precedence	than	subtraction.	When	dividing	`a`	by	`b	/	c`,	the	result	is	a	float	because	division	returns	a
float	by	default.	```python	#	result3	is	8	because	division	has	higher	precedence	result3	=	a	-	b	/	c	```	The	use	of	parentheses	changes	the	order	of	operations,	as	seen	in	`result4`.	This	ensures	that	`a`	and	`b`	are	subtracted	first,	then	divided	by	`c`.	```python	#	result4	is	2	because	parentheses	change	the	order	of	operations	result4	=	(a	-	b)	/	c	```
The	main	function	in	JavaScript	demonstrates	similar	behavior.	```javascript	//	Main	function	function	main()	{	let	a	=	10;	let	b	=	5;	let	c	=	2;	//	result3	is	8	because	division	has	higher	precedence	let	result3	=	a	-	b	/	c;	//	result4	is	2	because	parentheses	change	the	order	of	operations	let	result4	=	(a	-	b)	/	c;	}	```	In	C++,	the	code	shows	that	`b	<	c	!=
c`	evaluates	to	true,	as	`c`	cannot	be	compared	with	an	integer	in	this	manner.	```cpp	//	Using	relational	operators	bool	result1	=	b	<	c	!=	c;	```	This	is	because	`!=`	has	higher	precedence	than	`	b)	?	"a	is	greater	than	b"	:	"a	is	not	greater	than	b";	std::cout


